871 resultados para Nanostructured Emulsion
Resumo:
The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA.
Resumo:
Lipid nanoemulsions have recently been proposed as parenteral delivery systems for poorly-soluble drugs. These systems consist of nanoscale oil/water dispersions stabilized by an appropriate surfactant system in which the drug is incorporated into the oil core and/or adsorbed at the interface. This article reviews technological aspects of such nanosystems, including their composition, preparation methods, and physicochemical properties. From this review, it was possible to identify five groups of nanoemulsions based on their composition. Biopharmaceutical aspects of formulations containing some commercially available drugs (diazepam, propofol, dexamethasone, etomidate, flurbiprofen and prostaglandin E1) were then discussed.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
This paper reports the synthesis of nanostructured hydrogels of acrylamide by a two-step polymerisation process. The first step is performed by inverse microemulsion polymerization (water-in-oil) of N-isopropylacrylamide (NIPA), with these particles then added to aqueous solutions of acrylamide (AM), adding a crosslinking agent. The polymerization reaction is then initiated, thereby producing nanostructured hydrogels. We determined the capacity to absorb water, water and / or ethanol when nanostructured hydrogels were immersed in aqueous solutions with different concentrations of ethanol. It was found that the hydrogels were selective in absorbing water in all cases increasing with the ethanol concentration of the solutions.
Resumo:
In this work, nanostructured samples of barium zirconate (BaZrO3) and calcium zirconate (CaZrO3) were synthesized by the gel-combustion method, using glycine as fuel. The ceramic powders were calcined at 550 °C for 2 h and subsequently heat treated at 1350 °C for 10 min (fast-firing). The X-ray diffraction technique was employed to identify and characterize the crystalline phases present in the synthesized powders, using the Rietveld method. Monophasic nanostructured samples of BaZrO3 and CaZrO3 presenting average crystallite sizes of around 8.5 and 10.3 nm, respectively, were found after fast-firing.
Resumo:
We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics.
Resumo:
Phase transition and viscosity behavior of emulsified systems were studied after modifying their physicochemical formulation. Effects of concentration and nature of salts and n-alcohols, and water/oil relation on the rheological properties of emulsions were also studied. Pre-equilibrated systems were emulsified according to an agitation procedure, and the viscosity (cP) was measured at different shear rates ranging from 1 to 300 s-1. The phase behavior, as well as the emulsion type based on electrolytic conductivity, was observed. Several interpretations of the flow and viscosity curves of emulsions were made through the estimation of rheological parameters such as consistency index "k" and behavior index "n".
Resumo:
This aim of this work was to compare two methods for copper determination in insulating oils from power transformers by GFAAS. The first method was extraction induced by emulsion breaking, which determined the preconcentration of copper in an aqueous solution and exhibited a limit of quantification of 0.27 µg L-1. Also, a second method based on the direct introduction of samples into GFAAS in the form of detergent emulsions, prepared with Triton X-114 and HNO3, was investigated. In this case, the limit of quantification was 1.7 µg L-1. Seven samples of used oils were successfully analyzed by both methods.
Resumo:
In this work, an experimental design was used to analyze the influence of process parameters on the production of extracellular enzymes such as β-glucosidase and peroxidase, and their possible effect on the obtention of soluble and nanostructured silica from rice husk ash by the action of the fungus Fusarium oxysporum. Specifically, pH, fermentation time and glucose concentration in the culture medium were varied. Statistical analysis indicated that the silica synthesis in the aqueous medium was strongly dependent on pH and time. Although the glucose concentration does not exert a direct influence on the biosynthesis of silica, it is an important parameter in the production of extracellular enzymes. To prevent enzyme inhibition and provide higher dissolution of silica, it is recommended to work at a pH close to neutral with a glucose concentration of 3 g L-1 for at least 144 h.
Resumo:
Biodegradable nanoparticles (NPs) have received considerable attention because of their possible use in the development of strategies for the topical delivery of oils and therapeutic drugs, particularly when drug penetration in dermis is desired. Zein is a prolamine and is a promising material for the design of drug delivery systems. In this study, NPs were prepared with zein and were used to encapsulate and release terpinen-4-ol, which is a therapeutic agent for the treatment of melanoma. The results show that the zein NPs are promising nanostructured systems for the prolonged delivery of T4OL with potential applications in anti-melanoma therapy.
Resumo:
New techniques for treating wastewater, particularly the removal or degradation of organic pollutants and heavy metals, among other pollutants, have been extensively studied. The use of nanostructured iron oxides as adsorbent and photocatalyst for the removal of these contaminants has proved a promising approach, not only because of their high treatment efficiency, but also for their cost-effectiveness, having the flexibility for in situ and ex situ applications. In this review, we briefly introduced the most used kinds of iron oxide nanoparticles, some synthesis techniques for iron oxide nanostructure formation, their potential benefits in environmental clean-up, and their recent advances and applications in wastewater treatment. These advances range from the direct applications of synthesized nanoparticles as adsorbents for removing toxic contaminants or as catalysts to oxidize and break down noxious contaminants (including bacteria and viruses) in wastewater, to integrating nanoparticles into conventional treatment technologies, such as composite photocatalytic filters (membranes, sand and ceramic) that combine separation technology with photocatalytic activity. Finally, the impact of nanoparticles on the environment and human health is briefly discussed.
Resumo:
SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.
Resumo:
Ultrasound as a metrology tool has many applications in health care, industrial, and chemical analyses. Ultrasonic techniques are rapid, low-cost, non-invasive, and highly repeatable. Although ultrasound can be used to measure emulsions, no effort had been made thus far to optimize its sensitivity for metrological analysis. In this work, a technique for analyzing oil in water was validated. The wave velocity and attenuation were chosen as the ultrasonic parameters. The technique was implemented in the boundary region established by law for effluents from industrial plants involved with biofuel manufacturing. A technical effort of this study was to establish stable emulsions in concentrations close to the desired limit of study. The phase behaviours of pseudo-ternary oil, sodium chloride, and sodium lauryl sulphate were studied. The composition in the widest region of the diagram allowed for the formation of a stable emulsion, from which the ultrasound measurement was carried out. An analytical curve was obtained using ultrasonic attenuation to determine the content of oils and greases in wastewater ranging 15–240 ppm. The speed of sound did not appear to be an applicable parameter for this application. The technique was demonstrated to be an important alternative solution for the continuous monitoring of wastewater with regard to oil concentrations.
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.