955 resultados para NON-LINEAR MODELS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS: We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS: In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION: We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: This study aimed to assess the validity of COOP charts in a general population sample, to examine whether illustrations contribute to instrument validity, and to establish general population norms. METHODS: A general population mail survey was conducted among 20-79 years old residents of the Swiss canton of Vaud. Participants were invited to complete COOP charts, the SF-36 Health Survey; they also provided data on health service use in the previous month. Two thirds of the respondents received standard COOP charts, the rest received charts without illustrations. RESULTS: Overall 1250 persons responded (54%). The presence of illustrations did not affect score distributions, except that the illustrated 'physical fitness' chart drew greater non-response (10 vs. 3%, p < 0.001). Validity tests were similar for illustrated and picture-less charts. Factor analysis yielded two principal components, corresponding to physical and mental health. Six COOP charts showed strong and nearly linear relationships with corresponding SF36 scores (all p < 0.001), demonstrating concurrent validity. Similarly, most COOP charts were associated with the use of medical services in the past month. Only the chart on 'social support' partly deviated from construct validity hypotheses. Population norms revealed a generally lower health status in women and an age-related decline in physical health. CONCLUSIONS: COOP charts can be used to assess the health status of a general population. Their validity is good, with the possible exception of the 'social support' chart. The illustrations do not affect the properties of this instrument.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuous field mapping has to address two conflicting remote sensing requirements when collecting training data. On one hand, continuous field mapping trains fractional land cover and thus favours mixed training pixels. On the other hand, the spectral signature has to be preferably distinct and thus favours pure training pixels. The aim of this study was to evaluate the sensitivity of training data distribution along fractional and spectral gradients on the resulting mapping performance. We derived four continuous fields (tree, shrubherb, bare, water) from aerial photographs as response variables and processed corresponding spectral signatures from multitemporal Landsat 5 TM data as explanatory variables. Subsequent controlled experiments along fractional cover gradients were then based on generalised linear models. Resulting fractional and spectral distribution differed between single continuous fields, but could be satisfactorily trained and mapped. Pixels with fractional or without respective cover were much more critical than pure full cover pixels. Error distribution of continuous field models was non-uniform with respect to horizontal and vertical spatial distribution of target fields. We conclude that a sampling for continuous field training data should be based on extent and densities in the fractional and spectral, rather than the real spatial space. Consequently, adequate training plots are most probably not systematically distributed in the real spatial space, but cover the gradient and covariate structure of the fractional and spectral space well. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.