916 resultados para NF-KAPPA B AND LIPOPOLYSACCHARIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O transplante de ilhotas humanas, utilizado como reposição das células produtoras de insulina em pacientes portadores de diabetes mellitus tipo 1, está se tornando uma importante prática clínica. Entretanto, eventos inflamatórios não específicos presente nas ilhotas, são responsáveis pela vulnerabilidade das mesmas, e contribuem à diminuição do número celular durante o processo de isolamento e posterior transplante. CD40 é um membro da família do receptor de necrose tumoral, descrito em uma variedade de células. Em condições fisiológicas, o CD40 presente nas células apresentadoras de antígenos participa como molécula co-estimulatória na ativação dos linfócitos T. Porém, o CD40 também foi descrito em condições patológicas, como psoríase, aterosclerose e fibrose cística, onde sua expressão está envolvida em eventos crônicos inflamatórios. É interessante ressaltar que, o CD40 também tem sido descrito em neurônios, células que apresentam uma variedade de moléculas similares às expressas nas células M pancreáticas. Em vista desses achados, tentou-se determinar se a células M também poderiam expressar o receptor de CD40, e se presente, determinar possíveis conseqüências próinflamatórias após a sua ativação. Utilizaram-se diversas técnicas como RT-PCR, western blot, citometria de fluxo, imuno-histoquímica assim como imunofluorescência, para detectar a expressão de CD40 em ilhotas de camundongo, macaco e humano, e também na linhagem de células M NIT-1. Determinaram-se as vias de transdução de sinais de CD40 por western blot e ensaios com gene repórter. Foi determinada por tecnologia luminex, a secreção de citocinas e quimiocinas dependente de CD40 em ilhotas humanas, estimuladascom a proteína recombinante CD40L e em alguns casos confirmada por RT-PCR e imunofluorescência. Os resultados demonstram a expressão de CD40 nas células M, que pode ser aumentada pela ação de citocinas pró-inflamatórias, cuja ativação induz a secreção de mais citocinas e quimiocinas (IL-6, IL-8, MCP-1 e MIP-1M) dependentes das vias de transdução de sinais Raf/MEK/ERK e NF-VB. A interação CD40-CD40L aumentou a expressão de ICAM-1 e a induziu morte celular nas células M pancreáticas. Nesse sentido, a ativação de CD40 induz a secreção de mediadores solúveis próinflamatórios que podem comprometer a viabilidade das células M. O cenário próinflamatório sustentando pela ação de CD40 sugere que o mesmo poderia ter um papel ativo orquestrando um processo inflamatório

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A desnutrição é uma condição nutricional que pode afetar muitos aspectos da resposta imunológica, como alterações na migração celular, na fagocitose, na resposta bactericida, mudanças na produção de radicais livres e espécies de nitrogênio e na produção de citocinas pró-inflamatórias. Logo, indivíduos desnutridos apresentam maior susceptibilidade a infecções. Visto que a glutamina é um aminoácido de extrema importância para a funcionalidade de diversas células do sistema imune e que as mesmas apresentam aumento da utilização desse aminoácido durante processos infecciosos, investigou-se, neste trabalho, quais os efeitos da glutamina sobre alguns aspectos da mobilização, migração e sinalização celular em um modelo experimental de desnutrição proteica. Para tanto, utilizou-se camundongos da linhagem BALB/c machos, os quais foram divididos em dois grupos, Controle e Desnutrido, que passaram a receber dietas isocalóricas contendo 12% (normoproteica) e 2% de caseína (hipoproteica), respectivamente, durante 5 semanas. Para as avaliações in vivo, animais de ambos os grupos receberam por via endovenosa 100µL de solução contendo 1,25µg de LPS e após 1 hora 0,75mg/Kg de L-glutamina (GLUT). Após o período de desnutrição ou de indução ao processo inflamatório, os animais foram eutanasiados e as amostras biológicas coletas. Foram avaliados nos animais estimulados in vivo hemograma, mielograma, as citocinas IL-10 e TNF-α circulantes e a expressão de CD11b/CD18 nos granulócitos do sangue periférico. Foi avaliado, in vitro, a capacidade migratória, a expressão de CD11b/CD18 de polimorfonucleados da medula óssea e do sangue periférico, bem como a síntese de citocinas IL-1α, IL-6, IL-10, IL-12 e TNF-α e a expressão de NF-κB e IκBα em células cultivadas em meio com 0; 0,6; 2 e 10 mM de GLUT. Os animais desnutridos apresentaram anemia, leucopenia, hipoplasia medular e diminuição na concentração sérica de proteínas, albumina e pré-albumina. A GLUT, in vitro, apresentou capacidade de reduzir a produção de IL-1α e IL-6, bem como a ativação da via do NF-κB. No modelo in vivo a GLUT, em animais estimulados com LPS, alterou a cinética de migração neutrofílica e reduziu a expressão de CD18, bem como diminuiu os níveis de TNFα circulantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide-binding protein (LBP) and CD14 contribute to the recognition of pathogens by cells, which triggers the activation of defence responses. Smoking is a risk factor for the development of chronic obstructive pulmonary disease (COPD) and respiratory infections. The current authors theorised that levels of LBP and CD14 in the lungs of smokers would be higher than those in the lungs of never-smokers. These elevated levels could affect host responses upon infection. LBP, soluble CD14 (sCD14) and interleukin (IL)-8 were detected by ELISA. Nuclear factor (NF)- ?B, p38 and the inhibitor I?Ba were studied by immunoassays. Gene expression was assessed by RT-PCR. Bronchoalveolar lavage levels of LBP and CD14 were significantly higher in smokers and COPD patients than in never-smokers, whereas levels of both proteins were not significantly different between smokers and COPD patients. IL-6, IL-1ß5 and cigarette smoke condensate induced the expression of LBP and CD14 by airway epithelial cells. LBP and sCD14 inhibited the nontypeable Haemophilus influenzae (NTHi)-dependent secretion of IL-8 and the activation of NF-?B and p38 mitogen-activated protein kinase signalling pathways but they increased the internalisation of NTHi by airway epithelial cells. Thus, in the inflamed airways of smokers both proteins could contribute to inhibit bacteria-dependent cellular activation without compromising the internalisation of pathogens by airway cells. Copyright©ERS Journals Ltd 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 andBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, andBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), andBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.