799 resultados para Muscles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg(2+) homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 +/- 112.08%, 3 h = 124.7 +/- 15.96% and 6 h = 129.2 +/- 0%) and mVps34 (3 h = 68.8 +/- 15.1% and 6 h = 36.0 +/- 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 +/- 2.29% and 3 h = 47.0 +/- 6.65%; mVps34 3 h = 24.5 +/- 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BC) are antibacterial, antifungal and antiparasitic agents that have been used for treatment and prevention of diseases in fish. These dyes are metabolized into reduced leuco forms (LMG, LCV, LBG) that can be present in fish muscles for a long period. Due to the carcinogenic properties they are banned for use in fish for human consumption in many countries including the European Union and the United States. HPLC and LC-MS techniques are generally used for the detection of these compounds and their metabolites in fish. This study presents the development of a fast enzyme-linked immunosorbent assay (ELISA) method as an alternative for screening purposes. A first monoclonal cell line producing antibodies to MG was generated using a hybridoma technique. The antibody had good cross-reactivates with related chromatic forms of triphenylmethane dyes such as CV, BC, Methyl Green, Methyl Violet and Victoria Blue R. The monoclonal antibody (mAb) was used to develop a fast (20 min) disequilibrium ELISA screening method for the detection of triphenylmethanes in fish. By introducing an oxidation step with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) during sample extraction the assay was also used to detect the presence of the reduced metabolites of triphenylmethanes. The detection capability of the assay was 1 ng g(-1) for MG, LMG, CV, LCV and BC which was below the minimum required performance limit (MRPL) for the detection method of total MG (sum of MG and LMG) set by the Commission Decision 2004/25/EC (2 ng g(-1)). The mean recoveries for fish samples spiked at 0.5 MRPL and MRPL levels with MG and LMG were between 74.9 and 117.0% and inter- and intra-assay coefficients of variation between 4.7 and 25.7%. The validated method allows the analysis of a batch of 20 samples in two to three hours. Additionally, this procedure is substantially faster than other ELISA methods developed for MG/LMG thus far. The stable and efficient monoclonal cell line obtained is an unlimited source of sensitive and specific antibody to MG and other triphenylmethanes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semicarbazide (SEM), the marker residue for the banned nitrofuran veterinary antibiotic nitrofurazone (NFZ), has been detected regularly in foods (47% of recent nitrofuran EU Rapid Alerts involve SEM). However, the validity of SEM as a definitive marker for NFZ has been undermined by SEM arising from other sources including azodicarbonamide, a plastics blowing agent and flour treatment additive. An inexpensive screening test for SEM in food matrices is needed-all SEM testing currently uses expensive LC-MS/MS instrumentation. We now report the first production of antibodies against derivatised SEM. A novel carboxyphenyl SEM derivative was used to raise a polyclonal antibody that has been incorporated into a semi-quantitative microtitre plate ELISA, validated according to the criteria set out in Commission Decision 2002/657/EC, for use with chicken muscle. The antibody is highly specific for derivatised SEM, cross-reactivity being 1.7% with NFZ and negligible with a wide range of other nitrofurans and poultry drugs. Samples are derivatised with o-nitrobenzaldehyde and simultaneously protease digested before extraction by cation exchange SPE. The ELISA has a SEM detection capability (CC beta) of 0.25 mu g kg(-1) when a threshold of 0.21 mu g kg(-1) is applied to the selection of samples for confirmation (lowest observed 0.25 mu g kg(-1) fortified sample, n = 20), thus satisfying the EU nitrofurans' minimum required performance limit of 1 mu g kg(-1). N-FZ-incurred muscles (12) containing SEM at 0.5-5.0 mu g kg(-1) by LC-MS/MS, all screened positive by this ELISA protocol which is also applicable to egg and chicken liver. (C) 2007 Elsevier BN. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides, biogenic amines and acetylcholine are expressed abundantly within the nervous systems of parasitic flatworms, and are particularly evident in the innervation of the musculature. Such associations have implicated the nervous system in locomotion, host attachment and reproductive co-ordination. Information on the muscle systems of parasitic flatworms is generally sparse, in particular those muscles associated with the reproductive system, intestinal tract and attachment apparatus. Also, the use of sectioned material has left description of the 3-dimensional organization of the musculature largely unrecorded. Using fluorescein isothiocyanate (FITC)-labelled phalloidin as a site-specific probe for filamentous actin, applied to whole-mount preparations of adult Fasciola hepatica and examined by confocal scanning laser microscopy, the present work reports on the organization of the major muscle systems in this trematode parasite. A highly regular array of outer circular, intermediate longitudinal and inner diagonal fibres distinguishes the body wall musculature, which is also involved in the development of both ventral and oral suckers. Circular fibres dominate the duct walls of the male and female reproductive systems, whereas the muscles of the intestinal tract have a somewhat diffuse arrangement of fibres. An understanding of the structural complexity of the muscle systems of parasitic flatworms is considered as fundamental to the interpretation of results from physiological experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ascaris suum contains a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8, also called PF3) have been extensively studied and are known to exert actions on somatic muscle strips of the worm. In the present study, the effects of AF1, AF2 and AF8 on the activity of the vagina vera of female A. suum have been examined in vitro. The vagina vera is a muscular tube connecting the uterus and vagina uteri to the gonopore and is probably involved in regulating egg output. The tissue exhibited spontaneous, rhythmic contractions in vitro, which were modulated by each of the FaRPs tested. The effects of each of the peptides were qualitatively and quantitatively different, and in each case were reversible. AF1 (1 mu M) caused a biphasic response in the form of a transient lengthening of the preparation, followed by a shortening; contractions were initially inhibited but resumed 5 min post-addition of the peptide. Lower concentrations (less than or equal to 0.1 mu M) induced a less marked effect, with rhythmic contractions returning 5 min post-addition. AF2 and AF8 reduced contraction frequency at concentrations greater than or equal to 0.1 mu M. Both peptides also caused the tissue to shorten, although the effects of AF8 on baseline tension were inconsistent. The apparent potencies of AF1 and AF8 on contraction frequency of the vagina vera were 10-fold greater than AF2 and, unlike their actions on A. suum somatic body wall muscles, the actions of AF1 and AF2 were qualitatively different. Indeed, the effects of each of these FaRPs on the vagina vera were markedly different from those observed on the somatic muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of classical neurotransmitter molecules and numerous peptidic messenger molecules in nematode nervous systems indicate that although structurally simple, nematode nervous systems are chemically complex. Thus far, studies on one nematode neuropeptide family, namely the FMRFamide-related peptides (FaRPs), have revealed an unexpected variety of neuropeptide structures in both free-living and parasitic species. To date 23 nematode FaRPs have been structurally characterized including 12 from Ascaris suum, 8 from Caenorhabditis elegans, 5 from Panagrellus redivivus and 1 from Haemonchus contortus. Ten FaRP-encoding genes have been identified in Caenorhabditis elegans. However, the full complement of nematode neuronal messengers has yet to be described and unidentified nematode FaRPs await detection. Preliminary characterization of the actions of nematode neuropeptides on the somatic musculature and neurones of A. suum has revealed that these peptidic messengers have potent and complex effects. Identified complexities include the biphasic effects of KNEFIRFamide/KHEYLRFamide (AF1/2; relaxation of tone followed by oscillatory contractile activity) and KPNFIRFamide (PF4; rapid relaxation of tone followed by an increase in tone), the diverse actions of KSAYMRFamide (AF8 or PF3; relaxes dorsal muscles and contracts ventral muscles) and the apparent coupling of the relaxatory effects of SDPNFLRFamide/SADPNFLRFamide (PF1/PF2) to nitric oxide release. Indeed, all of the nematode FaRPs which have been tested on somatic muscle strips of A. suum have actions which are clearly physiologically distinguishable. Although we are a very long way from understanding how the actions of these peptides are co-ordinated, not only with those of each other but also with those of the classical transmitter molecules, to control nematode behaviour, their abundance coupled with their diversity of structure and function indicates a hitherto unidentified sophistication to nematode neuromuscular intergration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-HT-immunoreactivity in Entobdella soleae was found to be extensive throughout both the central and peripheral nervous systems, with the strongest staining occurring in the innervation of the forebody, most notably in the paired cerebral ganglia, pharynx and adhesive pads. In the reproductive system, staining was evident throughout the numerous cell bodies and fibres innervating the musculature of the egg-assembly apparatus. The haptor contained an extensive array of serotoninergic fibres derived from the main longitudinal cords; this array was associated with the haptoral muscles and sclerites, and possibly with the ventral sensory papillae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians. (C) 1996 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of vision on the excitability of corticospinal projections to the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of right human forearm was investigated before and during discrete movement of the opposite limb. An external force opposed the initial phase of the movement (wrist flexion) and assisted the reverse phase, so that recruitment of the wrist extensors was minimized. Three conditions were used as follows: viewing the inactive right limb (Vision), viewing the mirror image of the moving left limb (Mirror), and with vision of the right limb occluded (No Vision). Transcranial magnetic stimulation was delivered to the left motor cortex: before, at the onset of, or during the left limb movement to obtain motor evoked potentials (MEPs) in the muscles of the right forearm. At and following movement onset, MEPs obtained in the right FCR were smaller in the Vision condition than in the Mirror and No Vision conditions. A distinct pattern of variation was obtained for the ECR. In all conditions, MEPs in this muscle were elevated upon or following movement of the opposite limb. An additional analysis of ipsilateral silent periods indicated that interhemispheric inhibition plays a role in mediating these effects. Activity-dependent changes in corticospinal output to a resting limb during discrete actions of the opposite limb are thus directly contingent upon where one looks. Furthermore, the extent to which vision exerts an influence upon projections to specific muscles varies in accordance with the functional contribution of their homologs to the intended action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P <0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P <0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P <0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P <0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ 3-fold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring anatomical characteristics of the soleus muscle, its fiber numbers and their cross sectional area (CSA), by analysing transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were 4-to-8 times larger compared to BEL strain. In sub-strain BEH+/+, mutant myostatin was replaced with a wild type allele, however, BEH+/+muscles still were 2-to-4 times larger compared to the BEL strain. BEH soleus contained 2-times more (P<0.0001) and 2-times larger in CSA (P<0.0001) fibers compared to BEL strain. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (chromosome 1) and four suggestive (chromosomes 3, 4, 6 and 9) muscle weight QTLs were mapped in 21-day old F2 intercross (n=296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL, however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P<0.1) genes and 45,673 SNPs and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits, genomic and gene expression differences between BEH and BEL strains provide a promising model for the search of genes involved in muscle growth and musculoskeletal morphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been argued that the variation in brain activity that occurs when observing another person reflects a representation of actions that is indivisible, and which plays out in full once the intent of the actor can be discerned. We used transcranial magnetic stimulation to probe the excitability of corticospinal projections to 2 intrinsic hand muscles while motions to reach and grasp an object were observed. A symbolic cue either faithfully indicated the required final orientation of the object and thus the nature of the grasp that was required, or was in conflict with the movement subsequently displayed. When the cue was veridical, modulation of excitability was in accordance with the functional role of the muscles in the action observed. If however the cue had indicated that the alternative grasp would be required, modulation of output to first dorsal interosseus was consistent with the action specified, rather than the action observed-until the terminal phase of the motion sequence during which the object was seen lifted. Modulation of corticospinal output during observation is thus segmented-it progresses initially in accordance with the action anticipated, and if discrepancies are revealed by visual input, coincides thereafter with that of the action seen.