948 resultados para Multiplicity Vector
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and its bounded solutions are found. Some unusual results, including the existence of a bona fide solitary zero-eigenmode solution, are revealed for the Klein-Gordon equation. The cases of pure vector and scalar potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.
Resumo:
The problem of a fermion subject to a convenient mixing of vector and scalar potentials in a two-dimensional space-time is mapped into a Sturm-Liouville problem. For a specific case which gives rise to an exactly solvable effective modified Poschl-Teller potential in the Sturm-Liouville problem, bound-state solutions are found. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The Dirac delta potential as a limit of the modified Poschl-Teller potential is also discussed. The problem is also shown to be mapped into that of massless fermions subject to classical topological scalar and pseudoscalar potentials. Copyright (C) EPLA, 2007.
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.
Resumo:
The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar Poschl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation for massive spinless bosons in the presence of a nonminimal vector smooth step potential is revised. The problem is mapped into a Sturm-Lionville equation. The reflection and transmission coefficients are obtained and discussed in detail. Furthermore; we show that Klein's paradox does not show its face in this sort of interaction.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V(v) + V(s) = constant. These intrinsically relativistic and isospectral problems are solved in the case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.