1000 resultados para Multi-tierarchitecture
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
A study of radio intensity variations at seven frequencies in the range 0.3 to 90 GHz for compact extragalactic radio sources classified as BL Lacs and high- and low-optical polarization quasars (HPQs and LPQs) is presented. This include the results of flux-density monitoring of 33 compact sources for three years at 327 MHz with the Ooty Synthesis Radio Telescope. The degrees of 'short-term' (tau less than about 1 yr) variability for the three optical types are found to be indistinguishable at low frequencies (less than 1 GHz), pointing to an extrinsic origin for the low-frequency variability. At high frequencies, a distinct dependence on optical type is present, the variability increasing from LPQs, through HPQs to BL Lacs. This trend persists even when only sources with ultra-flat radio spectra (alpha greater than -0.2) are considered. Implications of this for the phenomenon of high-frequency variability and the proposed unification schemes for different optical types of active galactic nuclei are discussed.
Resumo:
A new fault-tolerant multi-transputer architecture capable of tolerating failure of any one component in the system is described. In the proposed architecture the processing nodes are automatically reconfigured in the event of a fault and the computations continue from the stage where the fault occurred. The process of reconfiguration is transparent to the user, and the identity of the failed component is communicated to the user along with the results of computations. Parallel solution of a typical engineering problem involving solution of Laplace's equation by the boundary element method has been implemented. The performance of the architecture in the event of faults has been investigated.
Resumo:
Networks of biochemical reactions regulated by positive-and negative-feedback processes underlie functional dynamics in single cells. Synchronization of dynamics in the constituent cells is a hallmark of collective behavior in multi-cellular biological systems. Stability of the synchronized state is required for robust functioning of the multi-cell system in the face of noise and perturbation. Yet, the ability to respond to signals and change functional dynamics are also important features during development, disease, and evolution in living systems. In this paper, using a coupled multi-cell system model, we investigate the role of system size, coupling strength and its topology on the synchronization of the collective dynamics and its stability. Even though different coupling topologies lead to synchronization of collective dynamics, diffusive coupling through the end product of the pathway does not confer stability to the synchronized state. The results are discussed with a view to their prevalence in biological systems. Copyright (C) EPLA, 2010
Resumo:
This study examines young people s political participation in transnational meetings. Methodologically the study aims to shed light on multi-sited global ethnography. Young people are viewed here as a social age group sensitive to critical, alternative and even radical political participation. The diversity of the young actors and their actions is captured by using several different methods. What is more, the study spurs us coming from the Global North to develop social science research towards methodological cosmopolitanism and to consider our research practices from a moral cosmopolitan perspective. The research sites are the EU Presidency Youth Event (2006 Hyvinkää, Finland), the Global Young Greens Founding Conference (2007 Nairobi, Kenya), the European Social Forum (2008 Malmö, Sweden) and three World Social Forums (2006 Bamako, Mali; 2007 Nairobi Kenya and 2009 Belém, Brazil). The data consists of participant observation, documents and media articles of the meetings, interviews, photos, video, and internet data. This multidisciplinary study combines youth research, development studies, performative social science and political sociology. In this research the diverse field of youth political participation in transnational agoras is studied by using a cross-table of cosmopolitan resources (or the lack of them) and everydaymakers expert citizen dichotomy. First, the young participants of the EU Presidency youth event are studied as an example of expert citizens with cosmopolitan resources (these resources include, for example, language skills, higher education and international social network). Second, the study analyses those everyday-makers who use performative politics to demonstrate their political missions here and now. But in order to make the social movement global they need cosmopolitan resources to be able to use the social media tools and work globally. Third, the study reflects upon the difficulties of reaching those actors who lack cosmopolitan resources, either everyday-makers or expert citizens. The go-along method and the use of the interpreters are shown as ways to reach these young people s political missions. Fourth, the research underlines the importance of contact zones (i.e. spaces or situations where the aforementioned orientations and their differences temporarily disappear or weaken) for deeper democracy and for boosted dialogue between different kinds of participants. Keywords: political participation, young people, multi-sited ethnography, youth research, political sociology, development studies, performative social science
Resumo:
A four and a five-parameter functions are used to analyse and interpret the high and low temperature thermodynamic data and phase equilibria in the Ga-In system.
Resumo:
Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.
Resumo:
Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.