867 resultados para Multi-scale modelling
Resumo:
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.
Resumo:
In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections.
Resumo:
For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.
Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling
Resumo:
The evaporation (sublimation) of ice particles beneath frontal ice cloud can provide a significant source of diabatic cooling which can lead to enhanced slantwise descent below the frontal surface. The strength and vertical extent of the cooling play a role in determining the dynamic response of the atmosphere, and an adequate representation is required in numerical weather-prediction (NWP) models for accurate forecasts of frontal dynamics. In this paper, data from a vertically pointing 94 GHz radar are used to determine the characteristic depth-scale of ice particle sublimation beneath frontal ice cloud. A statistical comparison is made with equivalent data extracted from the NWP mesoscale model operational at the Met Office, defining the evaporation depth-scale as the distance for the ice water content to fall to 10% of its peak value in the cloud. The results show that the depth of the ice evaporation zone derived from observations is less than 1 km for 90% of the time. The model significantly overestimates the sublimation depth-scales by a factor of between two and three, and underestimates the local ice water content by a factor of between two and four. Consequently the results suggest the model significantly underestimates the strength of the evaporative cooling, with implications for the prediction of frontal dynamics. A number of reasons for the model discrepancy are suggested. A comparison with radiosonde relative humidity data suggests part of the overestimation in evaporation depth may be due to a high RH bias in the dry slot beneath the frontal cloud, but other possible reasons include poor vertical resolution and deficiencies in the evaporation rate or ice particle fall-speed parametrizations.
Resumo:
1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.
Resumo:
Despite the success of studies attempting to integrate remotely sensed data and flood modelling and the need to provide near-real time data routinely on a global scale as well as setting up online data archives, there is to date a lack of spatially and temporally distributed hydraulic parameters to support ongoing efforts in modelling. Therefore, the objective of this project is to provide a global evaluation and benchmark data set of floodplain water stages with uncertainties and assimilation in a large scale flood model using space-borne radar imagery. An algorithm is developed for automated retrieval of water stages with uncertainties from a sequence of radar imagery and data are assimilated in a flood model using the Tewkesbury 2007 flood event as a feasibility study. The retrieval method that we employ is based on possibility theory which is an extension of fuzzy sets and that encompasses probability theory. In our case we first attempt to identify main sources of uncertainty in the retrieval of water stages from radar imagery for which we define physically meaningful ranges of parameter values. Possibilities of values are then computed for each parameter using a triangular ‘membership’ function. This procedure allows the computation of possible values of water stages at maximum flood extents along a river at many different locations. At a later stage in the project these data are then used in assimilation, calibration or validation of a flood model. The application is subsequently extended to a global scale using wide swath radar imagery and a simple global flood forecasting model thereby providing improved river discharge estimates to update the latter.
Resumo:
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.
Resumo:
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground-belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into "hybrid approaches" that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process - oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground-belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground-belowground interactions. Improved ecosystem models are necessary toots to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
In previous empirical and modelling studies of rare species and weeds, evidence of fractal behaviour has been found. We propose that weeds in modern agricultural systems may be managed close to critical population dynamic thresholds, below which their rates of increase will be negative and where scale-invariance may be expected as a consequence. We collected detailed spatial data on five contrasting species over a period of three years in a primarily arable field. Counts in 20×20 cm contiguous quadrats, 225,000 in 1998 and 84,375 thereafter, could be re-structured into a wide range of larger quadrat sizes. These were analysed using three methods based on correlation sum, incidence and conditional incidence. We found non-trivial scale invariance for species occurring at low mean densities and where they were strongly aggregated. The fact that the scale-invariance was not found for widespread species occurring at higher densities suggests that the scaling in agricultural weed populations may, indeed, be related to critical phenomena.