859 resultados para Multi-objective optimization problem
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
O método de empilhamento por Superfície de Reflexão Comum (SRC) produz seções simuladas de afastamento nulo (AN) por meio do somatório de eventos sísmicos dos dados de cobertura múltipla contidos nas superfícies de empilhamento. Este método não depende do modelo de velocidade do meio, apenas requer o conhecimento a priori da velocidade próxima a superfície. A simulação de seções AN por este método de empilhamento utiliza uma aproximação hiperbólica de segunda ordem do tempo de trânsito de raios paraxiais para definir a superfície de empilhamento ou operador de empilhamento SRC. Para meios 2D este operador depende de três atributos cinemáticos de duas ondas hipotéticas (ondas PIN e N), observados no ponto de emergência do raio central com incidência normal, que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0) , o raio de curvatura da onda ponto de incidência normal (RPIN) e o raio de curvatura da onda normal (RN). Portanto, o problema de otimização no método SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros (β0, RPIN, RN) ótimos associados a cada ponto de amostragem da seção AN a ser simulada. A determinação simultânea destes parâmetros pode ser realizada por meio de processos de busca global (ou otimização global) multidimensional, utilizando como função objetivo algum critério de coerência. O problema de otimização no método SRC é muito importante para o bom desempenho no que diz respeito a qualidade dos resultados e principalmente ao custo computacional, comparado com os métodos tradicionalmente utilizados na indústria sísmica. Existem várias estratégias de busca para determinar estes parâmetros baseados em buscas sistemáticas e usando algoritmos de otimização, podendo estimar apenas um parâmetro de cada vez, ou dois ou os três parâmetros simultaneamente. Levando em conta a estratégia de busca por meio da aplicação de otimização global, estes três parâmetros podem ser estimados através de dois procedimentos: no primeiro caso os três parâmetros podem ser estimados simultaneamente e no segundo caso inicialmente podem ser determinados simultaneamente dois parâmetros (β0, RPIN) e posteriormente o terceiro parâmetro (RN) usando os valores dos dois parâmetros já conhecidos. Neste trabalho apresenta-se a aplicação e comparação de quatro algoritmos de otimização global para encontrar os parâmetros SRC ótimos, estes são: Simulated Annealing (SA), Very Fast Simulated Annealing (VFSA), Differential Evolution (DE) e Controlled Rando Search - 2 (CRS2). Como resultados importantes são apresentados a aplicação de cada método de otimização e a comparação entre os métodos quanto a eficácia, eficiência e confiabilidade para determinar os melhores parâmetros SRC. Posteriormente, aplicando as estratégias de busca global para a determinação destes parâmetros, por meio do método de otimização VFSA que teve o melhor desempenho foi realizado o empilhamento SRC a partir dos dados Marmousi, isto é, foi realizado um empilhamento SRC usando dois parâmetros (β0, RPIN) estimados por busca global e outro empilhamento SRC usando os três parâmetros (β0, RPIN, RN) também estimados por busca global.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Resumo:
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.
Resumo:
This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.
Resumo:
In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.
Resumo:
This work deals with the car sequencing (CS) problem, a combinatorial optimization problem for sequencing mixed-model assembly lines. The aim is to find a production sequence for different variants of a common base product, such that work overload of the respective line operators is avoided or minimized. The variants are distinguished by certain options (e.g., sun roof yes/no) and, therefore, require different processing times at the stations of the line. CS introduces a so-called sequencing rule H:N for each option, which restricts the occurrence of this option to at most H in any N consecutive variants. It seeks for a sequence that leads to no or a minimum number of sequencing rule violations. In this work, CS’ suitability for workload-oriented sequencing is analyzed. Therefore, its solution quality is compared in experiments to the related mixed-model sequencing problem. A new sequencing rule generation approach as well as a new lower bound for the problem are presented. Different exact and heuristic solution methods for CS are developed and their efficiency is shown in experiments. Furthermore, CS is adjusted and applied to a resequencing problem with pull-off tables.
Resumo:
Le persone che soffrono di insufficienza renale terminale hanno due possibili trattamenti da affrontare: la dialisi oppure il trapianto di organo. Nel caso volessero seguire la seconda strada, oltre che essere inseriti nella lista d'attesa dei donatori deceduti, possono trovare una persona, come il coniuge, un parente o un amico, disposta a donare il proprio rene. Tuttavia, non sempre il trapianto è fattibile: donatore e ricevente possono, infatti, presentare delle incompatibilità a livello di gruppo sanguigno o di tessuto organico. Come risposta a questo tipo di problema nasce il KEP (Kidney Exchange Program), un programma, ampiamente avviato in diverse realtà europee e mondiali, che si occupa di raggruppare in un unico insieme le coppie donatore/ricevente in questa stessa situazione al fine di operare e massimizzare scambi incrociati di reni fra coppie compatibili. Questa tesi approffondisce tale questione andando a valutare la possibilità di unire in un unico insieme internazionale coppie donatore/ricevente provenienti da più paesi. Lo scopo, naturalmente, è quello di poter ottenere un numero sempre maggiore di trapianti effettuati. Lo studio affronta dal punto di vista matematico problematiche legate a tale collaborazione: i paesi che eventualmente accettassero di partecipare a un simile programma, infatti, devono avere la garanzia non solo di ricavarne un vantaggio, ma anche che tale vantaggio sia equamente distribuito fra tutti i paesi partecipanti.