954 resultados para Monte Carlo method
Resumo:
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.
Resumo:
El proyecto de investigación parte de la dinámica del modelo de distribución tercerizada para una compañía de consumo masivo en Colombia, especializada en lácteos, que para este estudio se ha denominado “Lactosa”. Mediante datos de panel con estudio de caso, se construyen dos modelos de demanda por categoría de producto y distribuidor y mediante simulación estocástica, se identifican las variables relevantes que inciden sus estructuras de costos. El problema se modela a partir del estado de resultados por cada uno de los cuatro distribuidores analizados en la región central del país. Se analiza la estructura de costos y el comportamiento de ventas dado un margen (%) de distribución logístico, en función de las variables independientes relevantes, y referidas al negocio, al mercado y al entorno macroeconómico, descritas en el objeto de estudio. Entre otros hallazgos, se destacan brechas notorias en los costos de distribución y costos en la fuerza de ventas, pese a la homogeneidad de segmentos. Identifica generadores de valor y costos de mayor dispersión individual y sugiere uniones estratégicas de algunos grupos de distribuidores. La modelación con datos de panel, identifica las variables relevantes de gestión que inciden sobre el volumen de ventas por categoría y distribuidor, que focaliza los esfuerzos de la dirección. Se recomienda disminuir brechas y promover desde el productor estrategias focalizadas a la estandarización de procesos internos de los distribuidores; promover y replicar los modelos de análisis, sin pretender remplazar conocimiento de expertos. La construcción de escenarios fortalece de manera conjunta y segura la posición competitiva de la compañía y sus distribuidores.
Resumo:
Analizar los procedimientos sistemáticos para la síntesis de resultados; ofrecer alternativas metodológicas a los problemas detectados en el proceso de realización de un meta-análisis; y establecer un conjunto de pautas istemáticas para la realización de revisiones de resultados de investigación. La primera parte presenta la conceptualización del meta-análisis como una perspectiva para la información de resultados. Después se describen y analizan las alternativas metodológicas de integración meta-analítica. Por último se evalúa el funcionamiento de las propuestas metodológicas determinando la adecuación a las características comunes de desarrollo de un estudio meta-analítico. Se utiliza el método analítico-descriptivo y la simulación Monte Carlo, que permite comparar alternativas según criterios objetivos. Se trata de generar conjuntos de datos que respondan a modelos predeterminados. A los datos así generados se les aplica la técnica objeto de estudio y se comprueba su comportamiento en las distintas condiciones experimentales. Se muestra la superioridad de los modelos jerárquicos lineales en la síntesis cuantitativa de la evidencia en el ámbito de las Ciencias Sociales, puesto que sus estimadores están escasamente sesgados, son altamente eficientes, robustos y sus pruebas de contraste muestran potencia por encima de los niveles nominales. La síntesis de resultados responde a la necesidad de racionalizar ante la acumulación de conocimientos fruto del avance científico. De entre las alternativas, el meta-análisis es la herramienta más adecuada para la síntesis cuantitativa. Es un tipo de investigación centrado en el análisis de la generalización de resultados de estudios primarios permitiendo establecer el estado de la investigación en un ámbito concreto y elaborar modelos relacionales. Sus principales problemas son de tipo metodológico y procedimental. La adaptación de métodos estadísticos tradicionales de análisis de varianza y regresión, es un gran avance, pero no son del todo adecuados al meta-análisis. Por tanto, los procedimientos de integración propuestos desde los modelos jerárquicos lineales son una alternativa válida, sencilla y eficaz a los tradicionales procedimientos meta-analíticos de integración de resultados.
Resumo:
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2 <= f <= 0.8). Consistent with experiments, the disordered phase is found to exhibit direct first-order transitions to each of the ordered morphologies. This includes the spontaneous formation of a perforated-lamellar phase, which presumably forms in place of the gyroid morphology due to finite-size and/or nonequilibrium effects. Also included in our study is a detailed examination of disordered cylinder-forming (f=0.3) diblock copolymers, revealing a substantial degree of pretransitional chain stretching and short-range order that set in well before the ODT, as observed previously in analogous studies on lamellar-forming (f=0.5) molecules. (c) 2006 American Institute of Physics.
Resumo:
The phase diagram for diblock copolymer melts is evaluated from lattice-based Monte Carlo simulations using parallel tempering, improving upon earlier simulations that used sequential temperature scans. This new approach locates the order-disorder transition (ODT) far more accurately by the occurrence of a sharp spike in the heat capacity. The present study also performs a more thorough investigation of finite-size effects, which reveals that the gyroid (G) morphology spontaneously forms in place of the perforated-lamellar (PL) phase identified in the earlier study. Nevertheless, there still remains a small region where the PL phase appears to be stable. Interestingly, the lamellar (L) phase next to this region exhibits a small population of transient perforations, which may explain previous scattering experiments suggesting a modulated-lamellar (ML) phase.
Resumo:
Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A model for the structure of amorphous molybdenum trisulfide, a-MoS3, has been created using reverse Monte Carlo methods. This model, which consists of chains Of MoS6 units sharing three sulfurs with each of its two neighbors and forming alternate long, nonbonded, and short, bonded, Mo-Mo separations, is a good fit to the neutron diffraction data and is chemically and physically realistic. The paper identifies the limitations of previous models based on Mo-3 triangular clusters in accounting for the available experimental data.
Resumo:
The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. Monte Carlo methods for solving the rendering equation use sampling of the solid angle subtended by unit hemisphere or unit sphere in order to perform the numerical integration of the rendering equation. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Our aim is to construct and study the parallel sampling scheme for hemisphere and sphere. First we apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Then we introduce two new algorithms for sampling of orthogonal spherical triangles. Both algorithms are based on a transformation of the unit square. Similarly to the Arvo's algorithm for sampling of arbitrary spherical triangle the suggested algorithms accommodate the stratified sampling. We derive the necessary transformations for the algorithms. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle. The sampling of total hemisphere and sphere is performed in parallel for all sub-domains simultaneously by using the symmetry property of partitioning. The applicability of the corresponding parallel sampling scheme for Monte Carlo and Quasi-D/lonte Carlo solving of rendering equation is discussed.
Resumo:
This paper is turned to the advanced Monte Carlo methods for realistic image creation. It offers a new stratified approach for solving the rendering equation. We consider the numerical solution of the rendering equation by separation of integration domain. The hemispherical integration domain is symmetrically separated into 16 parts. First 9 sub-domains are equal size of orthogonal spherical triangles. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangles, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections of unit square into an orthogonal spherical triangle and into a spherical quadrangle are derived and used to generate sampling points. Then, the symmetric sampling scheme is applied to generate the sampling points distributed over the hemispherical integration domain. The necessary transformations are made and the stratified Monte Carlo estimator is presented. The rate of convergence is obtained and one can see that the algorithm is of super-convergent type.