981 resultados para Molecular biology|Genetics|Cellular biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/- 0.60) and 12.5 (+/- 0.26) mu g/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 mu g/mL, respectively. The MBC of UA-LIPO was twice as low (16 mu g/mL) as that of UA (32 mu g/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plausible approach to evaluate the inhibitory action of antifungals is through the investigation of the fungal resistance to these drugs. We describe here the molecular cloning and initial characterization of the A. nidulans lipA gene, where mutation (lipA1) conferred resistance to undecanoic acid, the most fungitoxic fatty acid in the C(7:0)-C(18:0) series. The lipA gene codes for a putative lipase with the sequence consensus GVSIS and WIFGGG as the catalytic signature. Comparison of the wild-type and LIP1 mutant strain nucleotide sequences showed a G -> A change in lipA1 allele, which results in a Glu(214) -> Lys substitution in LipA protein. This ionic charge change in a conserved LipA region, next to its catalytic site, may have altered the catalytic properties of this enzyme resulting in resistance to undecanoic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichophyton rubrum is the most common etiological agent of human dermatophytosis. Despite the incidence and medical importance of this dermatophyte, little is known about the mechanisms of host invasion and pathogenicity. Host invasion depends on the adaptive cellular responses of the pathogen that allow it to penetrate the skin layers, which are mainly composed of proteins and lipids. In this study, we used suppression subtractive hybridization to identify transcripts over-expressed in T rubrum cultured in lipid as carbon source. Among the subtractive cDNA clones isolated, 85 clones were positively screened by cDNA array dot blotting and were sequenced. The putative proteins encoded by the isolated transcripts showed similarities to fungal proteins involved in metabolism, signaling, defense, and virulence, such as the MDR/ABC transporter, glucan 1,3-beta-glucosidase, chitin synthase B, copper-sulfate-regulated protein, and serine/threonine phosphatase (calcineurin A). These results provide the first molecular insight into the genes differentially expressed during the adaptation of T. rubrum to a lipidic carbon source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsatellite loci that were previously developed in the tropical tree Tabebuia aurea were used for the genetic analysis of Tabebuia roseo-alba populations. Nine of 10 simple sequence repeat markers were amplified, and the polymorphism was assessed in 58 individuals sampled from two stands in southeastern Brazil. All loci were polymorphic with Mendelian inheritance. The allele numbers were high, ranging from 5 to 13 in population I and 3 to 7 in population II, with means of 8.9 and 5.5, respectively. We conclude that these markers can be efficiently used for parentage and gene-flow studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipins constitute a novel family of Mg2+-dependent phosphatidate phosphatases that catalyze the dephosphorylation of phosphatidic acid to yield diacylglycerol, an important intermediate in lipid metabolism and cell signaling. Whereas a single lipin is detected in less complex organisms, in mammals there are distinct lipin isoforms and paralogs that are differentially expressed among tissues. Compatible with organism tissue complexity, we show that the single Drosophila Lpin1 ortholog (CG8709, here named DmLpin) expresses at least three isoforms (DmLpinA, DmLpinK and DmLpinJ) in a temporal and spatially regulated manner. The highest levels of lipin in the fat body, where DmLpinA and DmLpinK are expressed, correlate with the highest levels of triacylglycerol (TAG) measured in this tissue. DmLpinK is the most abundant isoform in the central nervous system, where TAG levels are significantly lower than in the fat body. In the testis, where TAG levels are even lower, DmLpinJ is the predominant isoform. Together, these data suggest that DmLpinA might be the isoform that is mainly involved in TAG production, and that DmLpinK and DmLpinJ could perform other cellular functions. In addition, we demonstrate by immunofluorescence that lipins are most strongly labeled in the perinuclear region of the fat body and ventral ganglion cells. In visceral muscles of the larval midgut and adult testis, lipins present a sarcomeric distribution. In the ovary chamber, the lipin signal is concentrated in the internal rim of the ring canal. These specific subcellular localizations of the Drosophila lipins provide the basis for future investigations on putative novel cellular functions of this protein family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pfaffia paniculata (Brazilian ginseng) roots and/or its extracts have shown anti-neoplastic, chemopreventive, and anti-angiogenic properties. The aim of this work was to investigate the chemopreventive mechanisms of this root in Mice Submitted to the infant model of hepatocarcinogenesis, evaluating the effects oil cellular proliferation, apoptosis. and intercellular communication. Fifteen-day-old BALB/c male mice were given, i.p., 10 mu g/g of the carcinogen N-nitrosodiethylamine (DEN). Animals were separated into three groups at weaning and were given different concentrations of powdered P. paniculata root (0%, 2%, or 10%) added to commercial food for 27 weeks. Control group (CT) was not exposed to the carcinogen and was given ration without the root. After euthanasia, the animals` liver and body weight were measured. Liver fragments were sampled to Study intercellular communication, molecular biology, and histopathological analysis. Cellular proliferation was evaluated by immunohistochemistry for PCNA, apoptosis was evaluated by apoptotic bodies count and alkaline cornet technique, and inter-cellular communication by diffusion of lucifer yellow dye, immunofluorescence, western blot and real-time PCR for connexins 26 and 32. Chronic treatment with powdered P. paniculata root reduced cellular proliferation and increased apoptosis in the 2%, group. Animals in the 10% group had an increase in apoptosis with chronic inflammatory process. Intercellular communication showed no alterations in any of the groups analyzed. These results Indicate that chemopreventive effects of P. paniculata are related to the control of cellular proliferation and apoptosis, but not to cell communication and/or connexin expression, and are directly Influenced by the root concentration. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early studies of changes in mucin expression in disorders of the gastrointestinal tract focused on alterations in the carbohydrate chain. This review briefly considers the various mechanisms by which such alterations may come about: (a) normal variation, (b) sialic acid alterations, (c) defective assembly of carbohydrate side-chains, (d) changed expression of core proteins and (e) epithelial metaplasia. The availability of monoclonal antibodies to mucin core proteins adds a new dimension to mucin histochemistry. It is now possible to offer explanations for traditional mucin histochemical findings on the basis of lineage-specific patterns of mucin core protein expression. Changes in core protein expression are described in inflammatory, metaplastic and neoplastic disorders of the gastrointestinal tract. The possibility that mucin change could be important in the aetiology of some diseases such as ulcerative colitis and H. pylori gastritis is considered. It is more probable, however, that changes in mucin expression are secondary to reprogramming of cellular differentiation and altered cell turnover. As such they may serve as markers to explain pathogenesis and provide novel diagnostic and prognostic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

it has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.