952 resultados para Mixed integer non-linear programming (MINLP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental constraints imposed on hydropoweroperation are usually given in the form of minimum environmental flows and maximum and minimum rates of change of flows, or ramp rates. One solution proposed to mitigate the environmental impact caused by the flows discharged by a hydropower plant while reducing the economic impact of the above-mentioned constraints consists in building a re-regulationreservoir, or afterbay, downstream of the power plant. Adding pumpingcapability between the re-regulationreservoir and the main one could contribute both to reducing the size of the re-regulationreservoir, with the consequent environmental improvement, and to improving the economic feasibility of the project, always fulfilling the environmental constraints imposed to hydropoweroperation. The objective of this paper is studying the contribution of a re-regulationreservoir to fulfilling the environmental constraints while reducing the economic impact of said constraints. For that purpose, a revenue-driven optimization model based on mixed integer linear programming is used. Additionally, the advantages of adding pumpingcapability are analysed. In order to illustrate the applicability of the methodology, a case study based on a real hydropower plant is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD dissertation is framed in the emergent fields of Reverse Logistics and ClosedLoop Supply Chain (CLSC) management. This subarea of supply chain management has gained researchers and practitioners' attention over the last 15 years to become a fully recognized subdiscipline of the Operations Management field. More specifically, among all the activities that are included within the CLSC area, the focus of this dissertation is centered in direct reuse aspects. The main contribution of this dissertation to current knowledge is twofold. First, a framework for the so-called reuse CLSC is developed. This conceptual model is grounded in a set of six case studies conducted by the author in real industrial settings. The model has also been contrasted with existing literature and with academic and professional experts on the topic as well. The framework encompasses four building blocks. In the first block, a typology for reusable articles is put forward, distinguishing between Returnable Transport Items (RTI), Reusable Packaging Materials (RPM), and Reusable Products (RP). In the second block, the common characteristics that render reuse CLSC difficult to manage from a logistical standpoint are identified, namely: fleet shrinkage, significant investment and limited visibility. In the third block, the main problems arising in the management of reuse CLSC are analyzed, such as: (1) define fleet size dimension, (2) control cycle time and promote articles rotation, (3) control return rate and prevent shrinkage, (4) define purchase policies for new articles, (5) plan and control reconditioning activities, and (6) balance inventory between depots. Finally, in the fourth block some solutions to those issues are developed. Firstly, problems (2) and (3) are addressed through the comparative analysis of alternative strategies for controlling cycle time and return rate. Secondly, a methodology for calculating the required fleet size is elaborated (problem (1)). This methodology is valid for different configurations of the physical flows in the reuse CLSC. Likewise, some directions are pointed out for further development of a similar method for defining purchase policies for new articles (problem (4)). The second main contribution of this dissertation is embedded in the solutions part (block 4) of the conceptual framework and comprises a two-level decision problem integrating two mixed integer linear programming (MILP) models that have been formulated and solved to optimality using AIMMS as modeling language, CPLEX as solver and Excel spreadsheet for data introduction and output presentation. The results obtained are analyzed in order to measure in a client-supplier system the economic impact of two alternative control strategies (recovery policies) in the context of reuse. In addition, the models support decision-making regarding the selection of the appropriate recovery policy against the characteristics of demand pattern and the structure of the relevant costs in the system. The triangulation of methods used in this thesis has enabled to address the same research topic with different approaches and thus, the robustness of the results obtained is strengthened.