866 resultados para Mixed effects model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the "mixed" lubrication regime of practical interest, in which there is "real" contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model. © 2005 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identification of venomous species of Persian Gulf cone snails and characterization of venom composition and their features is so important from the point of medical importance. Marine cone snails from the genus Conus are estimated to consist of up to 700 species. The venom of cone snails has yielded a rich source of novel neuroactive peptides or conotoxins. The present study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. The specimens of Conus textile were collected of Larak Island from depth of 7 m. The collected samples were transferred to laboratory alive and were stored at -700 c. he veno s ducts were separated and ho ogenized with deionized water he ixture centrifuged at rp for inutes upernatant was considered as extracted veno and stored at - C after lyophylization. The protein profile of venom determined by using SDS-PAGE and HPLC used to investigate the extracted venom and to evaluate the analgesic activity, formalin test was carried out. SDS-PAGE indicated several bands ranged between 6 and 250 kDa. Chromatogram of the venom demonstrated more than 44 large and small fractions. The amount of 10 ng of Conus crude venom and analgesic peptide showed the best anti-pain activity in formalin test. No death observed up to 100 mg/kg, which is 250,000 times higher than the effective dose.Venom characterization of Persian Gulf Conus textile may be of medical importance and potential for new pharmaceutical drugs as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A diffuse interface phase field model is proposed for the unified analysis of diffusive and displacive phase transitions under nonisothermal conditions. Two order parameters are used for the description of the phenomena: one is related to the solute mass fraction and the other to the strain. The model governing equations come from the balance of linear momentum, the solute mass balance (which will lead to the Cahn-Hilliard equation) and the balance of internal energy. Thermodynamic restrictions allow to define constitutive relations for the thermodynamic forces and for the mechanical and chemical dissipations. Numerical tests carried out at different values of the initial temperature show that the model is able to describe the main features of both the displacive and the diffusive phase transitions, as well as their effect on the temperature. © 2010, Advanced Engineering Solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study the SWAP operation in a two-qubit anisotropic XXZ model in the presence of an inhomogeneous magnetic field. We establish the range of anisotropic parameter lambda within which the SWAP operation is feasible. The SWAP errors caused by the inhomogeneous field are evaluated.