990 resultados para Milton Chaos Womb Intertextuality
Resumo:
Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
Vaccines capable of inducing mucosal immunity in early postnatal life until adulthood, protecting early sexual initiation, should be considered as strategies to vaccination against HIV. The HIV-1 GAG protein as a chimera with the lysosome-associated membrane protein (LAMP/gag), encoded by a DNA vaccine, is targeted to the endosomal/lysosomal compartment that contains class II MHC molecules and has been shown to be immunogenic in adult mice. Assuming that one such strategy could help to overcome the immunological immaturity in the early postnatal period, we have evaluated the systemic and mucosal immunogenicity of LAMP/gag immunization in neonatal mice. Intranasal immunization with LAMP/gag vaccine induced higher levels of sIgA and IgG anti-GAG antibodies in intestinal washes than did the gag vaccine. The combination of ID injections and the IN protocol with the chimeric vaccine promoted the increase of Ab levels in sera. Both vaccines induced splenic IFN-gamma- secreting cells against GAG peptide pools, as well as in vivo cytotoxic T lymphocyte (CTL) function, and increased the percentage of CD8+ T cells to the immunodominant class I peptide in gut and spleen. However, only the chimeric vaccine was able to enhance Th1/Th2 cytokine secretion in response to class II GAG peptide and to enhance IL-4-secreting cells against GAG peptides and p24 protein stimuli. Long-lasting humoral and cellular responses were detected until adult age, following neonatal immunization with the chimeric vaccine. The LAMP/gag vaccination was able to induce potent GAG-specific T and B cell immune responses in early life which are essential to elicit sustained and long-lasting mucosal and systemic humoral response. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses, as measured by the breadth of the Gag peptide-specific IFN-gamma, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric IAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We evaluated if repeated stress modulates mucociliary clearance and inflammatory responses in airways of guinea pigs (GP) with chronic inflammation. The GP received seven exposures of ovalbumin or saline 0.9%. After 4th inhalation, animals were submitted to repeated forced swim stressor protocol (5x/week/2 weeks). After 7th inhalation, GP were anesthetized. We measured transepithelial potential difference, ciliary beat frequency, mucociliary transport, contact angle, cough transportability and serum cortisol levels. Lungs and adrenals were removed, weighed and analyzed by morphometry. Ovalbumin-exposed animals submitted to repeated stress had a reduction in mucociliary transport, and an increase on serum cortisol, adrenals weight, mucus wettability and adhesivity, positive acid mucus area and IL-4 positive cells in airway compared to non-stressed ovalbumin-exposed animals (p < 0.05). There were no effects on eosinophilic recruitment and IL-13 positive cells. Repeated stress reduces mucociliary clearance due to mucus theological-property alterations, increasing acid mucus and its wettability and adhesivity. These effects seem to be associated with IL-4 activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.
Resumo:
We investigated the effects of salbutamol on the markers of epithelial function in a murine model of chronic allergic pulmonary inflammation by recording the ciliary beat frequency (CBF) and the transepithelial potential difference (PD) in vivo. Mice were sensitized and received four challenges of ovalbumin (OVA group) or 0.9% saline (control group). Forty-eight hours after the 4th inhalation, we observed eosinophilia in the bronchoalveolar lavage and epithelium remodeling with stored acid mucus in the OVA group (P < 0.001). No difference in the baseline CBF was noticed between the groups; however, the OVA group had a significantly lower baseline PD (P = 0.013). Salbutamol increased the CBF in all groups studied, and the dose response curve to salbutamol increased the PD in the OVA group from 10(-4) M to 10(-2) M. We suggest that salbutamol affects the CBF and the depth of the periciliary layer, which, in great part, determines the ability of the cilia to propel the mucus layer. This effect may have a positive impact on airway mucociliary transport in asthma and may have clinical implications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Airway structural changes occur early in childhood asthma, but it is unknown whether the development of airway alterations in children is similar to that of adults. We compared inflammation and remodeling parameters in allergic sensitized infantile, juvenile, and adult mice. Methods: Infantile mice (18D) were sensitized with three intraperitoneal injections (i.p.) of ovalbumin (OVA) at days 5 and 7 and challenged with OVA at days 14-16. The 18D1 group received an additional challenge at days 9-11. The juvenile mice (40D) received challenges at days 22-24 and 36-38. Adult mice (100D) were sensitized at days 60-62 and received three inhalations at days 77-79 and 96-98. Animals were submitted to whole body plethysmography. Airway eosinophils, CD3+ T-lymphocytes, IL-5+ cells, mucus content, collagen and reticular fibers density, and smooth muscle thickness were quantified. Results: All sensitized animals presented with airway hyperresponsiveness, without differences in eosinophil cell density The density of CD3+ T-cells was higher in the 100D and 1801 groups than in the 18D and 40D groups. Infantile sensitized groups demonstrated increased interleukin-5 expression in the airways. Infantile mice demonstrated more mucus in the bronchiolar epithelium than the 40D and 100D mice. The 18D animals demonstrated less collagen than the 18D1 group. Juvenile and adult mice had increased airway smooth muscle thickness when compared to age-matched controls, but no differences were observed in the infantile groups. Conclusion: We have shown that infantile mice develop inflammatory and structural alterations in the airways that are partially different from those developed in older animals. Pediatr Pulmonol. 2011;46:650-665. (C) 2011 Wiley-Liss, Inc.
Resumo:
Objective. To confirm the episode of eosinophilic pneumonitis that occurred in March 2001 in Manaus, Amazon, northern Brazil, as secondary to home aerosolization with 2% cypermethrin diluted in diesel compared with the more conventional 1% cypermethrin and soybean solution used in prophylaxis of dengue. Methods. Four groups of Swiss mice were kept in polycarbonate cages aerosolized with one of the following solutions: diesel, diesel and cypermethrin, soy oil and cypermethrin, and saline. Three and 6 days after exposure, resistance and compliance of the respiratory system and white cell kinetics in peripheral blood and lung tissue were analyzed. Results. The group exposed to diesel and cypermethrin showed higher respiratory system resistance (p < 0.001), lower compliance (p = 0.03), and increased eosinophils in blood (p = 0.03) and lung tissue (p = 0.005) compared with the other groups. There was an increase of neutrophils in the blood of all experimental groups on the third day after exposure (p < 0.001). Conclusions. We concluded that diesel associated with cypermethrin induced lung hyperresponsiveness in this experimental model and was associated with increased polymorphonuclear cells (eosinophils and neutrophils) in blood and lungs. This effect is strongest on the third day after exposure. These results are similar to the episode that occurred in Manaus in 2001 and suggest that diesel plus cypermethrin home aerosolization for arbovirosis prophylaxis should be revised.
Resumo:
We investigated the effects of oral tolerance (OT) in controlling inflammatory response, hyperresponsiveness and airway remodeling in guinea pigs (GP) with chronic allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/mL-OVA group) or normal saline (NS group). OT was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st ovalbumin inhalation (OT1 group) or after the 4th (OT2 group). The induction of OT in sensitized animals decreased the elastance of respiratory system (Ers) response after both antigen and methacholine challenges, peribronchial edema formation, eosinophilic airway infiltration, eosinophilopoiesis, and airways collagen and elastic fiber content compared to OVA group (P < 0.05). The number of mononuclear cells and resistance of respiratory system (Rrs) responses after antigen and methacholine challenges were decreased only in OT2 group compared to OVA group (P < 0.05). Concluding, our results show that inducing OT attenuates airway remodeling as well as eosinophilic inflammation and respiratory system mechanics. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
transition metals, which are involved in the pathological effects of PM. The objective of this study was to investigate the effects of intranasal administration of ROFA on pulmonary inflammation, pulmonary responsiveness, and excess mucus production in a mouse model of chronic pulmonary allergic inflammation. BALB/c mice received intraperitoneal injections of ovalbumin (OVA) solution (days 1 and 14). OVA challenges were performed on days 22, 24, 26, and 28. After the challenge, mice were intranasally instilled with ROFA. After forty-eight hours, pulmonary responsiveness was performed. Mice were sacrificed, and lungs were removed for morphometric analysis. OVA-exposed mice presented eosinophilia in the bronchovascular space (p < .001), increased pulmonary responsiveness (p < .001), and epithelial remodeling (p = .003). ROFA instillation increased pulmonary responsiveness (p = .004) and decreased the area of ciliated cells in the airway epithelium (p = .006). The combined ROFA instillation and OVA exposure induced a further increase in values of pulmonary responsiveness (p = .043) and a decrease in the number of ciliated cells in the airway epithelium (p = .017). PM exposure results in pulmonary effects that are more intense in mice with chronic allergic pulmonary inflammation.
Resumo:
Few data are available on autopsy-proven fatal asthma patients in Sao Paulo, Brazil. We characterized 73 asthma patients who were autopsied at the Servico de Verificacao de Obitos do Universidade de Sao Paulo between 1996 and 2004. An interview with the next of kin assessed socioeconomic status, history, and treatment of asthma. There were 42 women and 31 men. Fifty-six (76.7%) of them were older than 34 years. Sixty-three percent were Caucasians, 77.3% had < 8 years of schooling, and the median income was 1.6 times the minimum wage. Twenty-two patients (30.1%) were smokers and 14 (19.2%) were ex-smokers. Only 25 (34.2%) patients were regularly followed by a doctor. Only 12.3% received inhaled steroids. Thirty-five patients (47.9%) had moderate-to-severe asthma. Fifty-five (75.3%) deaths took place outside a hospital, We conclude that this population shares characteristics of severe or poorly controlled asthma, low educational and socioeconomic levels, and lack of medical care and of inhaled steroid use.
Resumo:
We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination Led to a persistent tower blood/bronchoalveolar eosinophilia following Toxocaro conis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T canis infection. Prominent Type-1 immune response was pointed out as the halt-mark of T canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides tow levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T canis infection, suggesting their possible use in further combined therapeutic interventions. (c) 2007 Elsevier Ltd. All rights reserved.