885 resultados para Migration and religion
Resumo:
Alterations in extracellular matrix (ECM) expression in the central nervous system (CNS) usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN) and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN) and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.
Resumo:
Integrins play crucial roles in cell adhesion, migration, and signaling by providing transmembrane links between the extracellular matrix and the cytoskeleton. Integrins cluster in macromolecular complexes to generate cell-matrix adhesions such as focal adhesions. In this mini-review, we compare certain integrin-based biological responses and signaling during cell interactions with standard 2D cell culture versus 3D matrices. Besides responding to the composition of the matrix, cells sense and react to physical properties that include three-dimensionality and rigidity. In routine cell culture, fibroblasts and mesenchymal cells appear to use focal adhesions as anchors. They then use intracellular actomyosin contractility and dynamic, directional integrin movements to stretch cell-surface fibronectin and to generate characteristic long fibrils of fibronectin in "fibrillar adhesions". Some cells in culture proceed to produce dense, three-dimensional matrices similar to in vivo matrix, as opposed to the flat, rigid, two-dimensional surfaces habitually used for cell culture. Cells within such more natural 3D matrices form a distinctive class of adhesion termed "3D-matrix adhesions". These 3D adhesions show distinctive morphology and molecular composition. Their formation is heavily dependent on interactions between integrin alpha5ß1 and fibronectin. Cells adhere much more rapidly to 3D matrices. They also show more rapid morphological changes, migration, and proliferation compared to most 2D matrices or 3D collagen gels. Particularly notable are low levels of tyrosine phosphorylation of focal adhesion kinase and moderate increases in activated mitogen-activated protein kinase. These findings underscore the importance of the dimensionality and dynamics of matrix substrates in cellular responses to the extracellular matrix.
Resumo:
Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.
Resumo:
Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.
Resumo:
Mast cell progenitors arise in bone marrow and then migrate to peripheral tissues where they mature. It is presumed that integrin receptors are involved in their migration and homing. In the present study, the expression of various integrin subunits was investigated in three systems of adherent and nonadherent mast cells. Mesentery mast cells, freshly isolated bone marrow-derived mast cells (BMMC) and RBL-2H3 cells grown attached to tissue culture flasks are all adherent mast cells and peritoneal mast cells, and cultured BMMC and RBL-2H3 cells grown in suspension represent nonadherent mast cell populations. Pure populations of mast cells were immunomagnetically isolated from bone marrow, mesentery and peritoneal lavage using the mast cell-specific monoclonal antibody AA4. By immunomicroscopy, we could demonstrate that all of these mast cells expressed alpha4, alpha5, alpha6, ß1 and ß7 integrin subunits. The expression of the alpha4 integrin subunit was 25% higher in freshly isolated mesentery mast cells and BMMC. Consistent with the results obtained by immunomicroscopy, mesentery mast cells expressed 65% more mRNA for the alpha4 integrin subunit than peritoneal mast cells. In vitro studies were also conducted using the rat mast cell line RBL-2H3. RBL-2H3 cells grown attached to the tissue culture flasks or as suspension cultures expressed the same integrin subunits identified in bone marrow, mesenteric and peritoneal mast cells ex vivo. Similarly, the expression of alpha4 integrin was higher in adherent cells. Therefore, alpha4 integrins may play a critical role in the anchorage of mast cells to the extracellular matrix in bone marrow and in peripheral tissues.
Resumo:
Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.
Resumo:
The distribution, morphology and morphometry of microglial cells in the chick cerebral hemispheres from embryonic day 4 (E4) to the first neonatal day (P1) were studied by histochemical labeling with a tomato (Lycopersicon esculentum) lectin. The histochemical analysis revealed lectin-reactive cells in the nervous parenchyma on day E4. Between E4 (5.7 ± 1.35 mm length) and E17 (8.25 ± 1.2 mm length), the lectin-reactive cells were identified as ameboid microglia and observed starting from the subventricular layer, distributed throughout the mantle layer and in the proximity of the blood vessels. After day E13, the lectin-reactive cells exhibited elongated forms with small branched processes, and were considered primitive ramified microglia. Later, between E18 (5.85 ± 1.5 mm cell body length) and P1 (3.25 ± 0.6 mm cell body length), cells with more elongated branched processes were observed, constituting the ramified microglia. Our findings provide additional information on the migration and differentiation of microglial cells, whose ramified form is observed at the end of embryonic development. The present paper focused on the arrangement of microglial cells in developing cerebral hemispheres of embryonic and neonatal chicks, which are little studied in the literature. Details of morphology, morphometry and spatial distribution of microglial cells contributed to the understanding of bird and mammal central nervous system ontogeny. Furthermore, the identification and localization of microglial cells during the normal development could be used as a morphological guide for embryonic brain injury researches.
Resumo:
In many countries, photodynamic therapy (PDT) has been recognized as a standard treatment for malignant conditions (for example, esophageal and lung cancers) and non-malignant ones such as age-related macular degeneration and actinic keratoses. The administration of a non-toxic photosensitizer, its selective retention in highly proliferating cells and the later activation of this molecule by light to form reactive oxygen species that cause cell death is the principle of PDT. Three important mechanisms are responsible for the PDT effectiveness: a) direct tumor cell kill; b) damage of the tumor vasculature; c) post-treatment immunological response associated with the leukocyte stimulation and release of many inflammatory mediators like cytokines, growth factors, components of the complement system, acute phase proteins, and other immunoregulators. Due to the potential applications of this therapy, many studies have been reported regarding the effect of the treatment on cell survival/death, cell proliferation, matrix assembly, proteases and inhibitors, among others. Studies have demonstrated that PDT alters the extracellular matrix profoundly. For example, PDT induces collagen matrix changes, including cross-linking. The extracellular matrix is vital for tissue organization in multicellular organisms. In cooperation with growth factors and cytokines, it provides cells with key signals in a variety of physiological and pathological processes, for example, adhesion/migration and cell proliferation/differentiation/death. Thus, the focus of the present paper is related to the effects of PDT observed on the extracellular matrix and on the molecules associated with it, such as, adhesion molecules, matrix metalloproteinases, growth factors, and immunological mediators.
Resumo:
Integrins are heterodimeric receptors composed of α and β transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. β2 integrin (CD18) associates with four different α (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that β2 integrin is also expressed by other types of cells. Since the gene for β2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that β2 integrin and the αL, αM, and αX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of β2 integrin or against its α subunit partners, showed that β2 integrin, as well as the αL, αM, and αX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of β2 integrin in these various locations in the embryonic heart. These results indicate that the β2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.
Resumo:
Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.
Resumo:
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Resumo:
Sphingolipids are widely expressed molecules, which traditionally were considered to have majorly structural properties. Nowadays, however, they are implicated in a wide range of different biological processes. The bioactive lipid sphingosine 1-phosphate (S1P) has emerged during the past decade as one of the most studied molecules due to its proliferative and pro-migratory abilities both during normal physiology and in the pathology of a subset of different diseases. Migration and invasion of cancer cells require changes in cell behavior and modulation of the tissue microenvironment. Tumor aggressiveness is markedly enhanced by hypoxia, in which hypoxia inducible transcription factors 1-2α (HIF-1-2α) are activated to promote metabolism, proliferation and migration. Invasion requires degradation of the extracellular matrix (ECM) achieved by several degrading and remodeling enzymes. Matrix metalloproteinases (MMPs) are broadly expressed and well accepted as proteolytic enzymes with essential roles both in normal physiology and in pathology. Previously, S1P was shown to strongly evoke migration of follicular ML-1 thyroid cancer cells. The objective of this study was to further investigate and understand the mechanisms behind this regulation. In the first project it was demonstrated that S1P enhances the expression and activity of HIF-1α. S1P enhanced the expression of HIF-1α by increasing its synthesis and stability. The S1P-increased HIF-1α was mediated via S1P3, Gi/0, PI3K, PKCβI, ERK1/2, mTOR and translation factors p70S6K and eIF4E. Finally, it was shown that HIF-1α mediated S1P-induced migration. The ECM is constituted of a complex and coordinated assembly of many types of proteins. In order to be able to invade, cells need to break down the ECM, therefore several key players in this event were investigated in the second project. S1P increased the secretion and activity of MMP2 and MMP9 via S1P-receptor 1 and 3 and that these MMPs participated in the S1P-facilitated invasion of ML-1 cells. In this interplay, calpains and Rac1 were involved, both of which are crucial players in migration and invasion. The prognosis for some types of thyroid cancer is relatively good. However, there are forms of thyroid cancers, for which there are no treatments or the current available treatments are inefficient. Thus, new medical interventions are urgently needed. In the third project the significance of the S1P-receptor modulating drug FTY720, which is currently used for the treatment of multiple sclerosis (MS), was studied. The effect of FTY720 was tested on several thyroid cancer cell lines, and it inhibited the proliferation and invasion of all cancer cell lines tested. In ML-1 cells, FTY720 attenuated invasion by blocking signaling intermediates important for migration and invasion of the cells. Moreover, FTY720 inhibited the proliferation of ML-1 cells by increasing the expression of p21 and p27, hence, inducing cell arrest in G1 phase of the cell cycle. Thus, it can be suggested that FTY720 could be used in the treatment of thyroid cancer.
Resumo:
Calcium (Ca2+) is involved in the regulation of variety of cellular functions including hallmarks of cancer development such as cellular migration and cellular proliferation. Store-operated calcium entry (SOCE) is a central mechanism in cellular calcium signaling and in maintaining the cellular calcium balance. Stromal interaction molecule 1(STIM1) has been identified as an important constituent of SOCE. In this thesis , the STIM1 proteins are studied for their importance in cellular processes and their effects on the expression of S1P1, S1P2, S1P3, VEGFR-2, and TRPC-1 in follicular ML-1 thyroid cancer cells. The results show the importance of STIM1 proteins in SOCE in these cells. The SOCE is significantly reduced in the STIM1 knockdown cells. The results also show the importance of STIM1 proteins in the expression of S1P2 and VEGFR-2 in these cells, as knockdown of STIM1 was shown to upregulate the expression of S1P2 and VEGFR-2. The migration and proliferation is also considerably reduced in the cells in which STIM1 has been knocked down showing the significance of STIM1 in the migration and proliferation in these cells.
Resumo:
Camilla Pelo Collagen Binding Integrins and Cancer Testis Antigens in Prostate Cancer and Melanoma Department of Biochemistry, MediCity Research Laboratory, University of Turku, Finland Annales Universitatis Turkuensis, Painosalama Oy, Turku, Finland 2016 ABSTRACT Prostate cancer is the second most common cancer in men worldwide. The incidence of melanoma, in turn, is increasing faster than any other cancer incidences. In Finland, more than 5000 prostate cancer and 1200 new melanoma cases are diagnosed each year. One approach to further understand the cellular processes involved in prostate cancer and melanoma is to gain better knowledge about alterations in gene expression and their potential impact on the progression of the diseases. This thesis is focused on expression studies in two gene families; integrins and cancer testis antigens (CT antigens), in human prostate adenocarcinoma and advanced human melanoma. Integrins are heterodimeric transmembrane receptors which regulate many important cellular processes such as cell proliferation, migration and survival. CT antigens are frequently expressed in different types of cancers, but are only expressed in testis in healthy individuals. CT antigens are also highly immunogenic proteins. Due to the properties mentioned above, integrins and CT antigens can function as target molecules for the development of cancer diagnostics and drugs. One of the main purposes of this thesis was to study the expression of the four collagen binding integrins α1β1, α2β1, α10β1, α11β1 and the cancer testis antigen 16 (CT16) in cancer cell lines and human tissues of prostate cancer and metastatic melanoma. Additional aims included studies on the biological role of CT16 and the abundance of CT16 in sera of advanced melanoma patients. The prognostic and diagnostic significance of CT16 and the collagen binding integrins were also evaluated. Expression studies on collagen binding integrins and the CT antigen CT16 in melanoma and prostate cancer were limited and the biological role of CT16 was unknown. In this thesis, the expression levels of α2β1 and α11β1 were found to be significantly altered in prostate cancer tissues. Integrin α2β1 decreased gradually during disease progression while α11 was elevated in prostate carcinoma compared to healthy tissues. In advanced melanoma, enhanced levels of α2 were associated with a significant shorter overall survival in advanced melanoma. In this thesis, CT16 was identified as a frequently expressed melanoma CT antigen with an anti-apoptotic function. To conclude, this thesis presents α2β1 and CT16, as potential and promising biomarkers for advanced melanoma. This thesis reports also the first functional study of CT16. Keywords: Collagen binding integrins, α1β1, α2β1, α10β1, α11β1, Cancer Testis antigens, CT16, melanoma, prostate cancer, expression
Resumo:
Kierkegaardian Intersubjectivity and the Question of Ethics and Responsibility By Kevin Krumrei. Kierkegaard's contributions to philosophy are generally admitted and recognized as valuable in the history of Western philosophy, both as one of the great anti-Hegelians, as the founder (arguably) of existentialism, and as a religious thinker. However valid this may be, there is similarly a generally admitted critique of Kierkegaard in the Western tradition, that Kierkegaard's philosophy of the development of the self leads the individual into an isolated encounter with God, to the abandonment of the social context. In other words, a Kierkegaardian theory of intersubjectivity is a contradiction in terms. This is voiced eloquently by Emmanuel Levinas, among others. However, Levinas' own intersubjective ethics bears a striking resemblance to Kierkegaard's, with respect to the description and formulation of the basic problem for ethics: the problem of aesthetic egoism. Further, both Kierkegaard and Levinas follow similar paths in responding to the problem, from Kierkegaard's reduplication in Works of Love, to Levinas' notion of substitution in Otherwise than Being. In this comparison, it becomes evident that Levinas' reading of Kierkegaard is mistaken, for Kierkegaard's intersubjective ethics postulates, in fact, the inseparability and necessity of the self s responsible relation to others in the self s relation to God, found in the command, "you shall love your neighbour as yourself."