997 resultados para Methyl Green
Resumo:
The objective of this study was to investigate the spatial patterns in green sea urchin (Strongylocentrotus droebachiensis) density off the coast of Maine, using data from a fishery-independent survey program, to estimate the exploitable biomass of this species. The dependence of sea urchin variables on the environment, the lack of stationarity, and the presence of discontinuities in the study area made intrinsic geostatistics inappropriate for the study; therefore, we used triangulated irregular networks (TINs) to characterize the large-scale patterns in sea urchin density. The resulting density surfaces were modified to include only areas of the appropriate substrate type and depth zone, and were used to calculate total biomass. Exploitable biomass was estimated by using two different sea urchin density threshold values, which made different assumptions about the fishing industry. We observed considerable spatial variability on both small and large scales, including large-scale patterns in sea urchin density related to depth and fishing pressure. We conclude that the TIN method provides a reasonable spatial approach for generating biomass estimates for a fishery unsuited to geostatistics, but we suggest further studies into uncertainty estimation and the selection of threshold density values.
Resumo:
Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.
Photocatalytic degradation of aqueous methyl-tert-butyl-ether (MTBE) in a supported-catalyst reactor