943 resultados para Melting points.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 181 m deep ice core drilled in 1994/95 on the south dome of Berkner Island, Antarctica, was analyzed for stable isotopes, major ions and microparticle concentrations. Samples for ion chromatography were prepared by using a novel technique of filling decontaminated sample from a device for continuous ice-core melting directly into the sample vials. The core was dated through identification of volcanic horizons and interpolative layer counting. The core, together with a similar core from the north dome, reveals a 1000 year history of relatively stable climate. Temporal variations in the two cores deviate from each other owing to changing patterns of regional-scale circulation; the best correspondence between them is found for MSA-. delta18O, accumulation rate and a sea-salt proxy show only negligible correlation, which suggests a complex meteorological setting. Increasing annual accumulation is observed for the last 100 years. A period of increased sea-salt concentrations started around AD 1405, as has also been observed in other cores. Microparticle concentrations are on average 1220 particles (>=1.0 ?m diameter)/mL; they are enhanced from AD 1200 to 1350, possibly because of a higher atmospheric mineral dust load or because local volcanic activity was stronger than previously thought. Microparticles and NH4+show marked but multiple and very irregular sub-annual peaks; long-term stacking of 1 year data intervals yields seasonal maxima in austral spring or mid-summer, respectively. Post-depositional redistribution was observed for MSA, NO3- and F- at volcanic horizons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel laser microparticle detector used in conjunction with continuous sample melting has provided a more than 1500 m long record of particle concentration and size distribution of the NGRIP ice core, covering continuously the period approximately from 9.5-100 kyr before present; measurements were at 1.65 m depth resolution, corresponding to approximately 35-200 yr. Particle concentration increased by a factor of 100 in the Last Glacial Maximum (LGM) compared to the Preboreal, and sharp variations of concentration occurred synchronously with rapid changes in the delta18O temperature proxy. The lognormal mode µ of the volume distribution shows clear systematic variations with smaller modes during warmer climates and coarser modes during colder periods. We find µ ~ 1.7 µm diameter during LGM and µ ~ 1.3 µm during the Preboreal. On timescales below several 100 years µ and the particle concentration exhibit a certain degree of independence present especially during warm periods, when µ generally is more variable. Using highly simplifying considerations for atmospheric transport and deposition of particles we infer that (1) the observed changes of µ in the ice largely reflect changes in the size of airborne particles above the ice sheet and (2) changes of µ are indicative of changes in long range atmospheric transport time. From the observed size changes we estimate shorter transit times by roughly 25% during LGM compared to the Preboreal. The associated particle concentration increase from more efficient long range transport is estimated to less than one order of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of major ions, silicate and nutrients (total N and P) were measured in samples of surface water from 28 lakes in ice-free areas of northern Victoria Land (East Antarctica). Sixteen lakes were sampled during austral summers 2001/02, 2003/04, 2004/05 and 2005/06 to assess temporal variation in water chemistry. Although samples showed a wide range in ion concentrations, their composition mainly reflected that of seawater. In general, as the distance from the sea increased, the input of elements from the marine environment (through aerosols and seabirds) decreased and there was an increase in nitrate and sulfate concentrations. Antarctic lakes lack outflows and during the austral summer the melting and/or ablation of ice cover, water evaporation and leaching processes in dry soils determine a progressive increase in water ion concentrations. During the five-year monitoring survey, no statistically significant variation in the water chemistry were detected, except for a slight (hardly significant) increase in TN concentrations. However, Canonical Correspondence Analysis (CCA) indicated that other factors besides distance from the sea, the presence of nesting seabirds, the sampling time and percentage of ice cover affect the composition of water in Antarctic cold desert environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of 40Ar-39Ar Ar dating constrain the age of the submerged volcanic succession, part of the seaward-dipping reflector sequence of the Southeast Greenland volcanic rifted margin, recovered during Leg 163. At the 63ºN drilling transect, the fully normally magnetized volcanic units at Holes 989B (Unit 1) and 990A (Units 1 and 2) are dated at 57.1 ± 1.3 Ma and 55.6 ± 0.6 Ma, respectively. This correlates with a common magnetochron, C25n. The underlying, reversely magnetized lavas at Hole 990A (Units 3-13) yield an average age of 55.8 ± 0.7 Ma and may correlate with C25r. The argon data, however, are also consistent with eruption of the lavas at Site 990 during the very earliest portion of C24. If so, the normally polarized units have to be correlated to a cryptochron (e.g., C24r-11 at ~55.57 Ma). The lavas at Holes 989B and 990A have typical oceanic compositions, implying that final plate separation between Greenland and northwest Europe took place at ~56 Ma. The age for Hole 989B lava is younger than expected from the seismic interpretations, posing questions about the structural evolution of the margin. An age of 49.6 ± 0.2 Ma for the basaltic lava at Site 988 (~66ºN) points to the importance of postbreakup tholeiitic magmatism at the rifted margin. Together with results from Leg 152, a virtually complete time frame for ~12 m.y. of pre-, syn-, and postbreakup volcanism during rifted margin evolution in Southeast Greenland can now be assembled. This time frame includes continental type volcanism at ~61-60 Ma, synbreakup volcanism beginning at ~57 Ma, and postbreakup volcanism at ~49.6 Ma. These discrete time windows coincide with distinct periods of tholeiitic magmatism from the onshore East Greenland Tertiary Igneous Province and is consistent with discrete mantle-melting events triggered by plume arrival (~61-60 Ma) under central Greenland, continental breakup (~57-54 Ma), and passage of the plume axis beneath the East Greenland rifted margin after breakup (~50-49 Ma), respectively.