935 resultados para Mechanical engineers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role that microstructure plays in the mechanical efficiency of natural cellular materials is examined here. The focus of this study is on elastic behaviour. Two natural materials with microstructures resistant to local bucking: plant stems and animal quills have also been examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of wakes shed by a moving bladerow with a downstream bladerow causes unsteady flow. The meaning of the freestream stagnation pressure and stagnation enthalpy in these circumstances has been examined using simple analyses, measurements and CFD. The unsteady flow in question arises from the behaviour of the wakes as so-called negative-jets. The interactions of the negative-jets with the downstream blades lead to fluctuations in static pressure which in turn generate fluctuations in the stagnation pressure and stagnation enthalpy. It is shown that the fluctuations of the stagnation quantities created by unsteady effects within the bladerow are far greater than those within the incoming wake. The time-mean exit profiles of the stagnation pressure and stagnation enthalpy are affected by these large fluctuations. This phenomenon of energy separation is much more significant than the distortion of the time-mean exit profiles that is caused directly by the cross-passage transport associated with the negative-jet, as described by Kerrebrock and Mikolajczak. Finally, it is shown that if only time-averaged values of loss are required across a bladerow, it is nevertheless sufficient to determine the time-mean exit stagnation pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An articulated lorry was instrumented in order to measure its performance in straight-line braking. The trailer was fitted with two interchangeable tandem axle sub-chassis, one with an air suspension and the other with a steel monoleaf four-spring suspension. The brakes were only applied to the trailer axles, which were fitted with anti-lock braking systems (ABS), with the brake torque controlled in response to anticipated locking of the leading axle of the tandem. The vehicle with the air suspension was observed to have significantly better braking performance than the steel suspension, and to generate smaller inter-axle load transfer and smaller vertical dynamic tyre forces. Computer models of the two suspensions were developed, including their brakes and anti-lock systems. The models were found to reproduce most of the important features of the experimental results. It was concluded that the poor braking performance of the steel four-spring suspension was mainly due to interaction between the ABS and inter-axle load transfer effects. The effect of road roughness was investigated and it was found that vehicle stopping distances can increase significantly with increasing road roughness. Two alternative anti-lock braking control strategies were simulated. It was found that independent sensing and actuation of the ABS system on each wheel greatly reduced the difference in stopping distances between the air and steel suspensions. A control strategy based on limiting wheel slip was least susceptible to the effects of road roughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of varying both the aspect ratio and the coefficient of friction of contacts with elliptical geometry on their elastic shakedown performance has been examined theoretically for surfaces with two types of subsurface hardness or strength profiles. In stepwise hardening the hard layer is of uniform strength while in linear hardening its strength reduces from a maximum at the surface to that of the core at the base of the hardened layer. The shakedown load is expressed as the ratio of the maximum Hertzian pressure to the strength of the core material. As the depth of hardening, expressed as a multiple of the elliptical semi-axis, is increased so the potential shakedown load increases from a level that is appropriate to a uniform half-space of unhardened material to a value reflecting the hardness of the surface and near-surface material. In a step-hardened material, the shakedown limit for a surface 'pummelled' by the passage of a sequence of such loads reaches a cut-off or plateau value, which cannot be exceeded by further increases in hardening depth irrespective of the value of the friction coefficient. For a linear-hardened material the corresponding plateau is approached asymptotically. The work confirms earlier results on the upper bounds on shakedown of both point and line contacts and provides numerical values of shakedown loads for intermediate geometries. In general, the case depth required to achieve a given shakedown limit reduces in moving from a transversely moving nominal line load to an axisymmetric point load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the "mixed" lubrication regime of practical interest, in which there is "real" contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turbulent wedges induced by a 3D surface roughness placed in a laminar boundary layer over a flat plate were visualised for the first time using both shear-sensitive and temperature-sensitive liquid crystals. The experiments were carried out at three different levels of favourable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges indicated by their associated surface shear stresses and heat transfer characteristics and hence obtain further insight about the difference in the behaviour of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of favourable pressure gradient increases. The result from the present study could have an important implication to the transition modelling of thermal boundary layers over gas turbine blades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip section and so reduce the secondary losses. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the steady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. It was found that in addition to upstream vane-rotor and rotor-downstream vane interactions, a new interaction mechanism was found resulting from the interaction between the downstream vane's potential field and the upstream vane's trailing edge potential field and shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine [1]. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, non-steady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.