913 resultados para Mcarthur River
Resumo:
The mid-Araguaia River basin in central Brazil is considered a priority area for biodiversity conservation, and Parque Estadual do Cantao (PEC) is one of the most important protected areas in this ecotone between Cerrado and Amazonia. This area suffers an intensive human pressure with high rates of deforestation, and still remains poorly studied in terms of biodiversity. From June 2007 to November 2008 we sampled small mammals from both banks of the mid-Araguaia River, in the states of Tocantins and Para. Data are given about morphological traits, geographic distribution and natural history of 22 species of small non-volant mammals (eight marsupials and 14 rodents) surveyed at PEC and its surroundings. We also present mitochondrial phylogenetic analyses that allow species identification within the genera: Oecomys, Oligoryzomys and Rhipidomys, and delineate an undescribed species of Thrichomys. Based on morphologic and molecular data, we describe a new species of Rhipidomys previously assigned to R. nitela, which is apparently endemic to the Araguaia-Tocantins basin in the Cerrado. Additionally, our phylogenetic analyses provide support for the role played by the Araguaia River as an important geographic barrier for two sister species of Rhipidomys.
Resumo:
Fatty acids have been used in marine biogeochemistry as food chain biomarkers, but in freshwater these studies are rare. In order to evaluate the fatty acid potential as biomarkers in freshwater, their profile was analyzed during vitellogenesis in two fish species, in both waterfall and reservoir environments of the Paraiba do Sul River Basin. Detrivorous Hypostomus affinis and omnivorous Geophagus brasiliensis seem to elongate and desaturate polyunsaturated fatty acids (PUFA) and transfer them to the ovaries` phospholipids. Waterfall Geophagus brasiliensis have more highly unsaturated fatty acids in the liver, but in the reservoir, accumulation mainly occurs in muscle and ovary triglycerides, suggesting trophic opportunism and a plasticity during vitellogenesis. In Hypostomus affinis, PUFA alteration occurs only in the reservoir, suggesting a high phytoplankton occurrence. Eutrophication and water speed is reflected in Hypostomus affinis ovaries by higher PUFAn3 and bacterial fatty acids. As in marine environments, analysis of mono- and polyunsaturated fatty acids during vitellogenesis can be used as a tool in food chain studies in freshwater.
Resumo:
This study is focused on the analysis of an accumulation of inorganic elements in muscles, liver and gonad of seven fish species from Sao Francisco River located in the Parana state of Brazil. Concentrations of the elements were determined using the SR-TXRF technique. In the muscles of fish species, negative length dependent relationships were observed for chromium and zinc ion absorption. The obtained results showed that accumulated Cr ions values are above the limits defined in the Brazilian legislative norm on food. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
The region of Toledo River, Parana, Brazil is characterized by intense anthropogenic activities. Hence, metal concentrations and physical-chemical parameters of Toledo River water were determined in order to complete an environmental evaluation catalog. Samples were collected monthly during one year period at seven different sites from the source down the river mouth, physical-chemical variables were analyzed, and major metallic ions were measured. Metal analysis was performed by using the synchrotron radiation total reflection X-ray fluorescence technique. A statistical analysis was applied to evaluate the reliability of experimental data. The analysis of obtained results have shown that a strong correlation between physical-chemical parameters existed among sites 1 and 7, suggesting that organic pollutants were mainly responsible for decreasing the Toledo River water quality.
Resumo:
The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.
Resumo:
This work describes the electroanalytical determination of pendimethalin herbicide levels in natural waters, river sediment and baby food samples, based on the electro-reduction of herbicide on the hanging mercury drop electrode using square wave voltammetry (SWV). A number of experimental and voltammetric conditions were evaluated and the best responses were achieved in Britton-Robinson buffer solutions at pH 8.0, using a frequency of 500 s(-1). a scan increment of 10 mV and a square wave amplitude of 50 mV. Under these conditions, the pendimethalin is reduced in an irreversible process, with two reduction peaks at -0.60 V and -0.71 V. using a Ag/AgCl reference system. Analytical curves were constructed and the detection limit values were calculated to be 7.79 mu g L(-1) and 4.88 mu g L(-1), for peak 1 and peak 2, respectively. The precision and accuracy were determinate as a function of experimental repeatability and reproducibility, which showed standard relative deviation values that were lower than 2% for both voltammetric peaks. The applicability of the proposed methodology was evaluated in natural water, river sediments and baby food samples. The calculated recovery efficiencies demonstrate that the proposed methodology is suitable for determining any contamination by pendimethalin in these samples. Additionally, adsorption isotherms were used to evaluate information about the behavior of pendimethalin in river sediment samples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the efficiency of polyacrylamides for natural organic matter (NOM) removal from Paraiba do Sul River (Brazil) raw water for drinking purposes. Jar tests were performed following an experimental design protocol. Three kinds of polyacrylamides (anionic, cationic, and non-ionic) at 0.2 mg L(-1) were tested. After coagulation, turbidity, DOC, UVA(254) and SCAN (UV-absorbing material) were determined. Color and pH were also measured. It was found that polyacrylamides did not reduce the amounts of alum and lime needed in the process and that the amount of alum alone for removing UV-absorbing organic matter is significantly higher. Efficiency of the coagulation process decreased as follows: non-ionic -> cationic -> anionic -> no polyacrylamide. Removal efficiencies for the best case were: 100%, 90%, 83%, and 68% for turbidity, DOC, UVA(254), and SCAN, respectively.
Resumo:
In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.
Resumo:
Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively.
Resumo:
With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change.
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Numerical Simulation Of Sediment Transport And Bedmorphology Around A Hydraulic Structure On A River
Resumo:
Scour around hydraulic structures is a critical problem in hydraulic engineering. Under prediction of scour depth may lead to costly failures of the structure, while over prediction might result in unnecessary costs. Unfortunately, up-to-date empirical scour prediction formulas are based on laboratory experiments that are not always able to reproduce field conditions due to complicated geometry of rivers and temporal and spatial scales of a physical model. However, computational fluid dynamics (CFD) tools can perform using real field dimensions and operating conditions to predict sediment scour around hydraulic structures. In Korea, after completing the Four Major Rivers Restoration Project, several new weirs have been built across Han, Nakdong, Geum and Yeongsan Rivers. Consequently, sediment deposition and bed erosion around such structures have became a major issue in these four rivers. In this study, an application of an open source CFD software package, the TELEMAC-MASCARET, to simulate sediment transport and bed morphology around Gangjeong weir, which is the largest multipurpose weir built on Nakdong River. A real bathymetry of the river and a geometry of the weir have been implemented into the numerical model. The numerical simulation is carried out with a real hydrograph at the upstream boundary. The bedmorphology obtained from the numerical results has been validated against field observation data, and a maximum of simulated scour depth is compared with the results obtained by empirical formulas of Hoffmans. Agreement between numerical computations, observed data and empirical formulas is judged to be satisfactory on all major comparisons. The outcome of this study does not only point out the locations where deposition and erosion might take place depending on the weir gate operation, but also analyzes the mechanism of formation and evolution of scour holes after the weir gates.
Resumo:
Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)