959 resultados para Maxwell e Bohm
Resumo:
BACKGROUND:
End-stage renal disease (ESRD) is increasingly prevalent but the inpatient costs associated with this condition are poorly defined due to limitations with data extraction and failure to differentiate between hospitalisation for renal and non-renal disease reasons. The impact of admissions primarily for the management of ESRD on hospital bed utilisation was assessed over a 5-year period in a large teaching hospital.
METHODS:
All admission episodes were reviewed and the ESRD group was identified by a primary International Classification of Diseases code for ESRD or a non-specific primary renal failure code with a secondary code for ESRD. The frequency and duration of hospitalisation and contribution to bed day occupancy of this group with ESRD was determined.
RESULTS:
There were 70,808 patients responsible for a total of 116,915 admissions and 919,212 bed days over the study period. Of these, 988 (1.4%) patients were admitted for the management of ESRD, accounting for 2,387 (2.0%) of admissions and utilisation of 23,011 (2.5%) bed days. After adjustment for age and gender, those admitted for ESRD management were significantly more likely to have a prolonged admission exceeding 30 days (odds ratio 1.46, 95% confidence interval 1.23-1.72, p < 0.001). When the admission was an emergency rather than an elective event, the patient was 4.6 times more likely to be hospitalised for over 30 days.
CONCLUSIONS:
Persons admitted for ESRD management are hospitalised more frequently and for longer than the overall inpatient population, occupying a substantial number of bed days.
Resumo:
Aims Diabetic nephropathy is a leading cause of end-stage renal disease. The transforming growth factor beta-bone morphogenic protein (BMP) pathway is implicated in the pathogenesis of diabetic nephropathy. The BMP2, BMP4 and BMP7 genes are located near linkage peaks for renal dysfunction, and we hypothesize that genetic polymorphisms in these biological and positional candidate genes may be risk factors for diabetic kidney disease.
Resumo:
Loci contributing to complex disease have been identified by focusing on genome-wide scans utilising non-synonymous single nucleotide polymorphisms (nsSNPs). We employed Illumina’s HNS12 BeadChip (13,917 high-value SNPs) which was specifically designed to capture nsSNPs and ideally complements more dense genome-wide association studies that fail to consider many of these putatively functional variants. The HNS12 panel also includes 870 tag SNPs covering the major histocompatibility region. All individuals genotyped in this study were Caucasians with (cases) and without (controls) diabetic nephropathy. About 449 individuals with type 2 diabetes (203 cases, 246 controls) were genotyped in the initial study. 1,467 individuals with type 1 diabetes (718 cases, 749 controls) were genotyped in the follow up study. 11,152 SNPs were successfully analysed and ranked for association with diabetic nephropathy based on significance (P) values. The top ranked 32 SNPs were subsequently genotyped using MassARRAY iPLEX™ and TaqMan technologies to investigate association of these polymorphisms with nephropathy in individuals with type 1 diabetes. The top ranked nsSNP, rs1543547 (P = 10-5), is located in RAET1L, a major histocompatibility class I-related gene at 6q25.1. Of particular interest, multiple nsSNPs within the top ranked (0.2%) SNPs are within several plausible candidate genes for nephropathy on 3q21.3 and 6p21.3.
Resumo:
BACKGROUND: CKD as defined by KDIGO/KDOQI has been shown to affect ~ 8.5% of the UK population. The prevalence of CKD in the UK is similar to that in the USA, yet incident dialysis rates are dramatically different. This retrospective cohort study investigates the association between reduced kidney function and mortality in a large UK population. METHODS: All serum creatinine results covering Northern Ireland's 1.7 million population were collected between 1 January 2001 and 31 December 2002. Estimated glomerular filtration rates (eGFR) were calculated for all serum creatinine measurements using four-variable MDRD equation (IDMS aligned). Patients were followed up for both all-cause and cardiovascular mortality data until the end of December 2006. Patients on renal replacement therapy were excluded. Subgroup analysis in the 75 345 subjects enrolled within a parallel primary care study permitted additional survival analysis with adjustment for traditional cardiovascular risk factors. RESULTS: A total of 1 967 827 serum creatinine results from 533 798 patients were collected. During the period of follow-up, 59 980 deaths occurred. In multivariate survival analysis, using eGFR as a time-varying covariate, a graded association between CKD (defined by eGFR) and all-cause mortality was identified. Compared with participants with an eGFR of > 60 mL/min/1.73 m(2), the adjusted hazard ratios (and 95% confidence intervals) for participants with an eGFR of 45-59 mL/min/1.73 m(2) was 1.02 (0.99-1.04), an eGFR of 30-44 mL/min/1.73 m(2) was 1.44 (1.40-1.47), an eGFR of 15-29 mL/min/1.73 m(2) was 2.12 (2.05-2.20) and an eGFR of
Resumo:
We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (similar to 20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that specific DNA methylation signatures are present in HMCs and PTCs, and standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.
Resumo:
Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.