946 resultados para Maximum Power Tracking
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
Wind- induced exposure is one of the major forces shaping the geomorphology and biota in coastal areas. The effect of wave exposure on littoral biota is well known in marine environments (Ekebon et al., 2003; Burrows et al., 2008). In the Cabrera Archipelago National Park wave exposure has demostrated to have an effect on the spatial distribution of different stages of E.marginatus (Alvarez et al., 2010). Standarized average wave exposures during 2008 along the Cabrera Archipelago National park coast line were calculated to be applied in studies of littoral species distribution within the archipelago. Average wave exposure (or apparent wave power) was calculated for points located 50 m equidistant on the coastline following the EXA methodology (EXposure estimates for fragmented Archipelagos) (Ekebon et al., 2003). The average wave exposures were standardized from 1 to 100 (minimum and maximum in the area), showing coastal areas with different levels of mea wave exposure during the year. Input wind data (direction and intensity) from 2008 was registered at the Cabrera mooring located north of Cabrera Archipelago. Data were provided by IMEDEA (CSIC-UIB, TMMOS http://www.imedea.uib-csic.es/tmoos/boyas/). This cartography has been developed under the framework of the project EPIMHAR, funded by the National Park's Network (Spanish Ministry of Environment, Maritime and Rural Affairs, reference: 012/2007 ). Part of this work has been developed under the research programs funded by "Fons de Garantia Agrària i Pesquera de les Illes Balears (FOGAIBA)".
Resumo:
In this letter, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ “harvest then transmit” mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms “state of the art” schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.
Resumo:
Koffein har sedan 1962 fram och tillbaka varit dopingklassat men är sedan 2004 ett tillåtet ergogent preparat inom idrotten. Flera studier har visat positiva resultat i uthållighetsidrotter och på maximal styrkeförmåga. Syftet med denna studie var att se om koffein har någon ergogen effekt på power i överkroppsmuskulaturen. I denna studie användes en dubbel-blindad, randomiserad cross-over design. En slumpmässig indelning inför det första testtillfället avgjorde ifall deltagarna började studien med koffein- eller placebosupplementering och bytte sedan supplementering inför testtillfälle två. Som supplementeringsmetod användes koffein i tuggummiform på grund av att det ger ett snabbare upptag. Power mättes genom testet sittande stöt med en kula på 5 kg. Resultatet visar på en mycket svag (ES=0,13) positiv förbättring av stötlängderna mellan interventionerna. En av anledningarna till det triviala resultatet tros kunna bero på att det urval som användes ej bestod av en homogengrupp vad gäller träningsbakgrund och prestationsnivå. På grund av detta är det svårt att dra några slutsatser om koffeinet har eller inte har några ergogena effekter på power i överkroppen.
Resumo:
Food safety has always been a social issue that draws great public attention. With the rapid development of wireless communication technologies and intelligent devices, more and more Internet of Things (IoT) systems are applied in the food safety tracking field. However, connection between things and information system is usually established by pre-storing information of things into RFID Tag, which is inapplicable for on-field food safety detection. Therefore, considering pesticide residue is one of the severe threaten to food safety, a new portable, high-sensitivity, low-power, on-field organophosphorus (OP) compounds detection system is proposed in this thesis to realize the on-field food safety detection. The system is designed based on optical detection method by using a customized photo-detection sensor. A Micro Controller Unit (MCU) and a Bluetooth Low Energy (BLE) module are used to quantize and transmit detection result. An Android Application (APP) is also developed for the system to processing and display detection result as well as control the detection process. Besides, a quartzose sample container and black system box are also designed and made for the system demonstration. Several optimizations are made in wireless communication, circuit layout, Android APP and industrial design to realize the mobility, low power and intelligence.
Resumo:
Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.
Resumo:
The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm seeding.
Resumo:
The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.
Resumo:
Regulated Transformer Rectifier Units contain several power electronic boards to facilitate AC to DC power conversion. As these units become smaller, the number of devices on each board increases while their distance from each other decreases, making active cooling essential to maintaining reliable operation. Although it is widely accepted that liquid is a far superior heat transfer medium to air, the latter is still capable of yielding low device operating temperatures with proper heat sink and airflow design. The purpose of this study is to describe the models and methods used to design and build the thermal management system for one of the power electronic boards in a compact, high power regulated transformer rectifier unit. Maximum device temperature, available pressure drop and manufacturability were assessed when selecting the final design for testing. Once constructed, the thermal management system’s performance was experimentally verified at three different power levels.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.