914 resultados para Markov Decision Process
Resumo:
Background Successful implementation of new methods and models of healthcare to achieve better patient outcomes and safe, person-centered care is dependent on the physical environment of the healthcare architecture in which the healthcare is provided. Thus, decisions concerning healthcare architecture are critical because it affects people and work processes for many years and requires a long-term financial commitment from society. In this paper, we describe and suggest several strategies (critical factors) to promote shared-decision making when planning and designing new healthcare environments. Discussion This paper discusses challenges and hindrances observed in the literature and from the authors extensive experiences in the field of planning and designing healthcare environments. An overview is presented of the challenges and new approaches for a process that involves the mutual exchange of knowledge among various stakeholders. Additionally, design approaches that balance the influence of specific and local requirements with general knowledge and evidence that should be encouraged are discussed. Summary We suggest a shared-decision making and collaborative planning and design process between representatives from healthcare, construction sector and architecture based on evidence and end-users’ perspectives. If carefully and systematically applied, this approach will support and develop a framework for creating high quality healthcare environments.
Resumo:
The Mauri Model DMF is unique in its approach to the management of water resources as the framework offers a transparent and inclusive approach to considering the environmental, economic, social and cultural aspects of the decisions being contemplated. The Mauri Model DMF is unique because it is capable of including multiple-worldviews and adopts mauri (intrinsic value or well-being) in the place of the more common monetised assessments of pseudo sustainability using Cost Benefit Analysis. The Mauri Model DMF uses a two stage process that first identifies participants’ worldviews and inherent bias regarding water resource management, and then facilitates transparent assessment of selected sustainability performance indicators. The assessment can then be contemplated as the separate environmental, economic, social and cultural dimensions of the decision, and collectively as an overall result; or the priorities associated with different worldviews can be applied to determine the sensitivity of the result to different cultural contexts or worldviews.
Resumo:
Este trabalho analisa, sob uma perspectiva quantitativa, a retenção de clientes durante o processo de renegociação de créditos inadimplentes. O foco principal é entender quais são as variáveis que explicam a retenção destes clientes e, portanto, aprimorar o processo de cobrança de uma instituição financeira no Brasil. O tema se torna relevante à medida em que vários fatores tornam a competitividade mais difícil no ambiente de crédito no país: a concentração bancária vivida na última década, o aumento da oferta de crédito nos últimos anos, a redução dos spreads bancários, e por fim a crise econômica global que afeta em especial o setor financeiro. A pesquisa procura investigar quais variáveis melhor explicam o fenômeno da retenção. Para tanto, foram segregados clientes projetados como rentáveis pela cadeia de Markov. Em seguida, testou-se a aderência de variáveis cadastrais e contratuais à variável-resposta retenção, por duas metodologias: o algoritmo CHAID da árvore de decisão e o método stepwise da regressão logística. Os resultados indicam que o método CHAID selecionou 7 e o stepwise 8 variáveis, sendo algumas de natureza cadastral e outras que vêm do próprio contrato de renegociação. Dado que as condições do contrato influenciam a retenção e portanto o valor do cliente, sugere-se que o processo de oferta incorpore operacionalmente a noção de retenção na atividade da cobrança.
Resumo:
The rapid growth of urban areas has a significant impact on traffic and transportation systems. New management policies and planning strategies are clearly necessary to cope with the more than ever limited capacity of existing road networks. The concept of Intelligent Transportation System (ITS) arises in this scenario; rather than attempting to increase road capacity by means of physical modifications to the infrastructure, the premise of ITS relies on the use of advanced communication and computer technologies to handle today’s traffic and transportation facilities. Influencing users’ behaviour patterns is a challenge that has stimulated much research in the ITS field, where human factors start gaining great importance to modelling, simulating, and assessing such an innovative approach. This work is aimed at using Multi-agent Systems (MAS) to represent the traffic and transportation systems in the light of the new performance measures brought about by ITS technologies. Agent features have good potentialities to represent those components of a system that are geographically and functionally distributed, such as most components in traffic and transportation. A BDI (beliefs, desires, and intentions) architecture is presented as an alternative to traditional models used to represent the driver behaviour within microscopic simulation allowing for an explicit representation of users’ mental states. Basic concepts of ITS and MAS are presented, as well as some application examples related to the subject. This has motivated the extension of an existing microscopic simulation framework to incorporate MAS features to enhance the representation of drivers. This way demand is generated from a population of agents as the result of their decisions on route and departure time, on a daily basis. The extended simulation model that now supports the interaction of BDI driver agents was effectively implemented, and different experiments were performed to test this approach in commuter scenarios. MAS provides a process-driven approach that fosters the easy construction of modular, robust, and scalable models, characteristics that lack in former result-driven approaches. Its abstraction premises allow for a closer association between the model and its practical implementation. Uncertainty and variability are addressed in a straightforward manner, as an easier representation of humanlike behaviours within the driver structure is provided by cognitive architectures, such as the BDI approach used in this work. This way MAS extends microscopic simulation of traffic to better address the complexity inherent in ITS technologies.
Resumo:
This paper develops a framework to test whether discrete-valued irregularly-spaced financial transactions data follow a subordinated Markov process. For that purpose, we consider a specific optional sampling in which a continuous-time Markov process is observed only when it crosses some discrete level. This framework is convenient for it accommodates not only the irregular spacing of transactions data, but also price discreteness. Further, it turns out that, under such an observation rule, the current price duration is independent of previous price durations given the current price realization. A simple nonparametric test then follows by examining whether this conditional independence property holds. Finally, we investigate whether or not bid-ask spreads follow Markov processes using transactions data from the New York Stock Exchange. The motivation lies on the fact that asymmetric information models of market microstructures predict that the Markov property does not hold for the bid-ask spread. The results are mixed in the sense that the Markov assumption is rejected for three out of the five stocks we have analyzed.
Resumo:
This paper examines value created through spinoffs over a period from 2002-2010. The net debt to average share price ratio and the debt to asset ratio of a company impacts the decision for this restructuring process statistically significant. The announcement of a spinoff yields abnormal returns (AR) for the stockholders of the parent. The relative size of the spin and the financial leverage correlated with the AR positively, whereas the net debt per share and the return on asset negatively. Therefore, no direct wealth transfer from the debt holders of a company to the equity holders can be derived from these results.
Resumo:
We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (in nite dimensional) problem and approximating problems working with projections from di erent subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.
Resumo:
This study aims to use a computational model that considers the statistical characteristics of the wind and the reliability characteristics of a wind turbine, such as failure rates and repair, representing the wind farm by a Markov process to determine the estimated annual energy generated, and compare it with a real case. This model can also be used in reliability studies, and provides some performance indicators that will help in analyzing the feasibility of setting up a wind farm, once the power curve is known and the availability of wind speed measurements. To validate this model, simulations were done using the database of the wind farm of Macau PETROBRAS. The results were very close to the real, thereby confirming that the model successfully reproduced the behavior of all components involved. Finally, a comparison was made of the results presented by this model, with the result of estimated annual energy considering the modeling of the distribution wind by a statistical distribution of Weibull
Resumo:
One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Global society and technology have changed the relationships of the market. Quality and cost are not the main aspects of any industrial product. On the other hand, design, innovation and sustainability became significant requirements to company’s competitiveness. In this context, the design approach has shown evolutions, integrating social and environmental aspects beside traditional aspects such as technical and economic. Still, design has been becoming a strategic opportunity for companies, improving their competitiveness and increasing their market share. Thus, this research has analyzed the integration of both the Sustainable Design and Strategic Design Coaching (SDC) method in the making decision activities of companies. A cement company (BQMIL) was assigned as case study, in which the previous results have pointed out the significant hole of those concepts to generate Eco-innovation and Eco-Brand to increase its market share, corroborating the expectative of the design team