948 resultados para Marble waste
Resumo:
Programa de doctorado: Nuevas perspectivas cognitivas en los estudios de lengua, literatura, y traducción. Tesis doctoral europea
Resumo:
Grabación realizada por Ciencia compartida (Biblioteca Universitaria)
Resumo:
A new type of pavement has been gaining popularity over the last few years in Europe. It comprises a surface course with a semi-flexible material that provides significant advantages in comparison to both concrete and conventional asphalt, having both rut resistance and a degree of flexibility. It also provides good protection against the ingress of water to the foundation, since it has an impermeable surface. The semi-flexible material, generally known as grouted macadam, comprises an open-graded asphalt skeleton with 25% to 35% voids into which a cementitious slurry is grouted. This hybrid mixture provides good rut resistance and a surface highly resistant to fuel and oil spillage. Such properties allow it to be used in industrial areas, airports and harbours, where those situations are frequently associated with heavy and slow traffic. Grouted Macadams constitute a poorly understood branch of pavement technology and have generally been relegated to a role in certain specialist pavements whose performance is predicted on purely empirical evidence. Therefore, the main objectives of this project were related to better understanding the properties of this type of material, in order to predict its performance more realistically and to design pavements incorporating grouted macadam more accurately. Based on a standard mix design, several variables were studied during this project in order to characterise the behaviour of Grouted Macadams in general, and the influence of those variables on the fundamental properties of the final mixture. In this research project, one approach was used to the design of pavements incorporating Grouted Macadams: a traditional design method, based on laboratory determined of the stiffness modulus and the compressive strength.
Resumo:
The increase in environmental and healthy concerns, combined with the possibility to exploit waste as a valuable energy resource, has led to explore alternative methods for waste final disposal. In this context, the energy conversion of Municipal Solid Waste (MSW) in Waste-To-Energy (WTE) power plant is increasing throughout Europe, both in terms of plants number and capacity, furthered by legislative directives. Due to the heterogeneous nature of waste, some differences with respect to a conventional fossil fuel power plant have to be considered in the energy conversion process. In fact, as a consequence of the well-known corrosion problems, the thermodynamic efficiency of WTE power plants typically ranging in the interval 25% ÷ 30%. The new Waste Framework Directive 2008/98/EC promotes production of energy from waste introducing an energy efficiency criteria (the so-called “R1 formula”) to evaluate plant recovery status. The aim of the Directive is to drive WTE facilities to maximize energy recovery and utilization of waste heat, in order to substitute energy produced with conventional fossil fuels fired power plants. This calls for novel approaches and possibilities to maximize the conversion of MSW into energy. In particular, the idea of an integrated configuration made up of a WTE and a Gas Turbine (GT) originates, driven by the desire to eliminate or, at least, mitigate limitations affecting the WTE conversion process bounding the thermodynamic efficiency of the cycle. The aim of this Ph.D thesis is to investigate, from a thermodynamic point of view, the integrated WTE-GT system sharing the steam cycle, sharing the flue gas paths or combining both ways. The carried out analysis investigates and defines the logic governing plants match in terms of steam production and steam turbine power output as function of the thermal powers introduced.
Resumo:
Scopo. Lo scopo di questo studio è esaminare il problema degli sprechi nelle moderne food supply chain, così da consentire una piena comprensione delle principali cause di inefficienza sistemica nell’industria alimentare e individuare potenziali opportunità di miglioramento. Approccio e Metodologia. Per raggiungere gli obiettivi prefissati la presente trattazione si propone di implementare una ricerca empirica basata sull’analisi di due realtà industriali operanti nel settore alimentare. Nello specifico verranno studiate due aziende integrate rispettivamente nel contesto economico italiano e in quello inglese e operanti a due stadi diversi e complementari della filiera alimentare, quello della produzione e quello della distribuzione. Questo studio incrociato consentirà, auspicabilmente, di portare alla luce quegli elementi chiave necessari per una lettura chiara ed esaustiva delle maggiori sfide che le moderne supply chain si trovano a dover affrontare, in una prospettiva di minimizzazione degli sprechi e di accrescimento del valore per il consumatore. Risultati. I risultati che si prevede di ottenere dall’implementazione di questo studio sono fondamentalmente quattro: 1.Piena comprensione del concetto di spreco nell’industria alimentare. 2.Identificazione dei principali fattori chiave che dovrebbero essere attentamente monitorati con lo scopo di conseguire un’efficace riduzione degli sprechi lungo la filiera alimentare. 3.Analisi critica di quelle che sono le più utilizzate pratiche manageriali e operative nelle moderne aziende alimentari. 4.Individuazione dei potenziali sviluppi che potrebbero essere implementati attraverso l’utilizzo delle più recenti ICT in termini di efficienza della supply chain. Valore della Ricerca. Seppure mediante un’analisi prevalentemente di tipo qualitativo, questa trattazione si prefigge di fornire un contributo nell’ambito del food supply chain management che, data la rilevanza del problema relativo agli sprechi, risulta oggi più attuale che mai. L’originalità di questo studio risiede principalmente nelle fonti dei dati che ne hanno costituito le fondamenta: da un lato la ricerca teorica sviluppata nel Regno Unito, dove lo studio della supply chain è ormai da decenni approfondito nelle più importanti Università; dall’altro la ricerca empirica sviluppata sia presso una delle più importanti e moderne aziende alimentari italiane, che presso uno dei più famosi logistics service provider a livello mondiale.
Resumo:
This work describes hydrogen production by anaerobic digestion of glucose, molasses and milk whey by 4 thermophilic Thermotoga strains. In the attached-cell tests, the biofilm support characterized by the highest specific surface resulted in the best H2 rate. All the Thermotoga strains examined (T. neapolitana, T. maritima, T. naphtophila, T. petrophila) could produce H2 from glucose, molasses and milk whey, both in suspended- and attached-cell tests. With all the three substrates, the best performances were obtained with T. neapolitana. Some tests were conducted out to select the optimal carrier for the attached-cell conditions. 4 types of carrier were tested: 3 sintered glass carriers and a ceramic one; the chosen carrier was Biomax.
Resumo:
Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.
Development of glass-ceramics from combination of industrial wastes together with boron mining waste
Resumo:
The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.
Resumo:
This work demonstrates that the plasma - induced combustion of intermediate to low-level radioactive waste is a suitable method for volume reduction and stabilization. Weaknesses of existing facilities can be overcome with novel developments. Plasma treatment of LILW has a high economical advantage by volume reduction for storage in final repositories.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.