737 resultados para MULTIBEAM BATHYMETRY
Resumo:
We present wide-field neutral hydrogen (H I) Lovell telescope multibeam, and Dominion Radio Astrophysical Observatory Hi synthesis observations, of the high velocity cloud (HVC) located in the general direction of the globular cluster M92. This cloud is part of the larger Complex C and lies at velocities between similar to -80 and -130 km s(-1) in the Local Standard of Rest. The Lovell telescope observations, of resolution 12 arcmin spatially and 3.0 km s(-1) in velocity, fully sampling a 3.1 degrees x 12.6 degrees RA-Dec grid, have found that this part of HVC Complex C comprises two main condensations, lying approximately north-south in declination, separated by similar to2 degrees and being parallel to the Galactic plane. At this resolution, peak values of the brightness temperature and Hi column density of similar to1.4 K and similar to5 x 10(19) cm(-2) are determined, with relatively high values of the full width half maximum velocity (FWHM) of similar to 22 km s(-1) being observed, equivalent to a gas kinetic temperature, in the absence of turbulence and geometric effects of similar to 10 000 K. Each of these properties, as well as the sizes of the clouds, are similar in the two components. The DRAO observations, towards the Northern HVC condensation, are the first high-resolution Hi spectra of Complex C. When smoothed to a resolution of 3 arcmin, they identify several Hi intensity peaks with column densities in the range 4-7 x 10(19) cm(-2). Further smoothing of these data to 6 arcmin resolution tentatively indicates that parts of the HVC consist of two velocity components, of similar brightness temperature, separated by similar to7 km s(-1) in velocity, and with FWHM velocity widths of similar to5-7 km s(-1). No IRAS 60 or 100 micron flux is associated with the M92 HVC. Cloud properties are briefly discussed and compared to previous observations of HVCs.
Resumo:
Cores from slopes east of the Great Barrier Reef (GBR) challenge traditional models for sedimentation on tropical mixed siliciclastic-carbonate margins. However, satisfactory explanations of sediment accumulation on this archetypal margin that include both hemipelagic and turbidite sedimentation remain elusive, as submarine canyons and their role in delivering coarse-grained turbidite deposits, are poorly understood. Towards addressing this problem we investigated the shelf and canyon system bordering the northern Ribbon Reefs and reconstructed the history of turbidite deposition since the Late Pleistocene. High-resolution bathymetric and seismic data show a large paleo-channel system that crosses the shelf before connecting with the canyons via the inter-reef passages between the Ribbon Reefs. High-resolution bathymetry of the canyon axis reveals a complex and active system of channels, sand waves, and local submarine landslides. Multi-proxy examination of three cores from down the axis of the canyon system reveals 18 turbidites and debrites, interlayered with hemipelagic muds, that are derived from a mix of shallow and deep sources. Twenty radiocarbon ages indicate that siliciclastic-dominated and mixed turbidites only occur prior to 31 ka during Marine Isotope Stage (MIS) 3, while carbonate-dominated turbidites are well established by 11 ka in MIS1 until as recently as 1.2 ka. The apparent lack of siliciclastic-dominated turbidites and presence of only a few carbonate-dominated turbidites during the MIS2 lowstand are not consistent with generic models of margin sedimentation but might also reflect a gap in the turbidite record. These data suggest that turbidite sedimentation in the Ribbon Reef canyons, probably reflects the complex relationship between the prolonged period (> 25 ka) of MIS3 millennial sea level changes and local factors such as the shelf, inter-reef passage depth, canyon morphology and different sediment sources. On this basis we predict that the spatial and temporal patterns of turbidite sedimentation could vary considerably along the length of the GBR margin.
Resumo:
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.
Resumo:
An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.
Resumo:
Over the years it was observed at the Ria de Aveiro lagoon inlet, near the head of the north breakwater, a depth increase that might threaten the stability of this structure. A trend of accretion in the navigation channel of this lagoon is observed, endangering the navigation in this region. In order to understand the origin of these and other trends observed, the knowledge of the sediment transport in the study area is imperative. The main aim of this work is understanding the dominant physical processes in the sediment transport of sediment at the Ria de Aveiro lagoon inlet and adjacent area, improving knowledge of this region morphodynamics. The methodology followed in this study consisted in the analyzes of the topohydrographic surveys performed by the Administration of the Aveiro Harbor, and in the numerical simulations results performed with the morphodynamic modeling system MORSYS2D. The analysis of the surveys was performed by studying the temporal evolution of the bathymetry. The numerical analysis was based on the implementation of the model at the study area, sensitivity analysis of the formulations used to compute the sediment transport to the variation of input parameters (e.g. depth, sediment size, tidal currents) and analysis of the sediment uxes and bathymetric changes predicted. The simulations considered as sediment transport forcing the tidal currents only and the coupled forcing of tides and waves. Considering the wave e ect as sediment transport forcing, both monochromatic waves and a wave regime were simulated. The results revealed that the observed residual sediment transport patterns are generated due to the channel con guration. Inside the lagoon the uxes are mainly induced by the tidal currents action, restricting the action of waves to the inlet and adjacent coast. In the navigation channel the residual sediment uxes predicted are directed o - shore with values between 7 and 40 m3=day generating accretions of approximately 10 m3=day for the shallower region and 35 m3=day for the region between the tidal gauge and the tri^angulo das mar es. At the inlet, the residual uxes are approximately 30 m3=day inducing trends of erosion of approximately 20 m3=day. At the North side of the nearshore accretion is predicted, while at the South side is predicted erosion, at the rates of 250 and 1500 m3=day, respectively. It was also concluded that the waves with higher contribution to the residual sediment uxes are those with heights between 4 and 5 m. However, the storm waves with heights bigger than 5 m, despite their 10% of frequency of occurrence are responsible for 25% of the observed sediment transport.
Resumo:
The Minho River, situated 30 km south of the Rias Baixas is the most important freshwater source flowing into the Western Galician Coast (NW of the Iberian Peninsula). This discharge is important to determine the hydrological patterns adjacent to its mouth, particularly close to the Galician coastal region. The buoyancy generated by the Minho plume can flood the Rias Baixas for long periods, reversing the normal estuarine density gradients. Thus, it becomes important to analyse its dynamics as well as the thermohaline patterns of the areas affected by the freshwater spreading. Thus, the main aim of this work was to study the propagation of the Minho estuarine plume to the Rias Baixas, establishing the conditions in which this plume affects the circulation and hydrographic features of these coastal systems, through the development and application of the numerical model MOHID. For this purpose, the hydrographic features of the Rias Baixas mouths were studied. It was observed that at the northern mouths, due to their shallowness, the heat fluxes between the atmosphere and ocean are the major forcing, influencing the water temperature, while at the southern mouths the influence of the upwelling events and the Minho River discharge were more frequent. The salinity increases from south to north, revealing that the observed low values may be caused by the Minho River freshwater discharge. An assessment of wind data along the Galician coast was carried out, in order to evaluate the applicability of the study to the dispersal of the Minho estuarine plume. Firstly, a comparative analysis between winds obtained from land meteorological stations and offshore QuikSCAT satellite were performed. This comparison revealed that satellite data constitute a good approach to study wind induced coastal phenomena. However, since the numerical model MOHID requires wind data with high spatial and temporal resolution close to the coast, results of the forecasted model WRF were added to the previous study. The analyses revealed that the WRF model data is a consistent tool to obtain representative wind data near the coast, showing good results when comparing with in situ wind observations from oceanographic buoys. To study the influence of the Minho buoyant discharge influence on the Rias Baixas, a set of three one-way nested models was developed and implemented, using the numerical model MOHID. The first model domain is a barotropic model and includes the whole Iberian Peninsula coast. The second and third domains are baroclinic models, where the second domain is a coarse representation of the Rias Baixas and adjacent coastal area, while the third includes the same area with a higher resolution. A bi-dimensional model was also implemented in the Minho estuary, in order to quantify the flow (and its properties) that the estuary injects into the ocean. The chosen period for the Minho estuarine plume propagation validation was the spring of 1998, since a high Minho River discharge was reported, as well as favourable wind patterns to advect the estuarine plume towards the Rias Baixas, and there was field data available to compare with the model predictions. The obtained results show that the adopted nesting methodology was successful implemented. Model predictions reproduce accurately the hydrodynamics and thermohaline patterns on the Minho estuary and Rias Baixas. The importance of the Minho river discharge and the wind forcing in the event of May 1998 was also studied. The model results showed that a continuous moderate Minho River discharge combined with southerly winds is enough to reverse the Rias Baixas circulation pattern, reducing the importance of the occurrence of specific events of high runoff values. The conditions in which the estuarine plume Minho affects circulation and hydrography of the Rias Baixas were evaluated. The numerical results revealed that the Minho estuarine plume responds rapidly to wind variations and is also influenced by the bathymetry and morphology of the coastline. Without wind forcing, the plume expands offshore, creating a bulge in front of the river mouth. When the wind blows southwards, the main feature is the offshore extension of the plume. Otherwise, northward wind spreads the river plume towards the Rias Baixas. The plume is confined close to the coast, reaching the Rias Baixas after 1.5 days. However, for Minho River discharges higher than 800 m3 s-1, the Minho estuarine plume reverses the circulation patterns in the Rias Baixas. It was also observed that the wind stress and Minho River discharge are the most important factors influencing the size and shape of the Minho estuarine plume. Under the same conditions, the water exchange between Rias Baixas was analysed following the trajectories particles released close to the Minho River mouth. Over 5 days, under Minho River discharges higher than 2100 m3 s-1 combined with southerly winds of 6 m s-1, an intense water exchange between Rias was observed. However, only 20% of the particles found in Ria de Pontevedra come directly from the Minho River. In summary, the model application developed in this study contributed to the characterization and understanding of the influence of the Minho River on the Rias Baixas circulation and hydrography, highlighting that this methodology can be replicated to other coastal systems.
Resumo:
Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process-oriented investigations of flow hydraulics, sediment dynamics and in-stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through-water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. Whilst the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM-photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary-winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50-100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM-photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). This article is protected by copyright. All rights reserved.
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445