567 resultados para MORPHOGENESIS
Resumo:
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.
Resumo:
From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt), limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The term secretome has been defined as a set of secreted proteins (Grimmond et al. [2003] Genome Res 13:1350-1359). The term secreted protein encompasses all proteins exported from the cell including growth factors, extracellular proteinases, morphogens, and extracellular matrix molecules. Defining the genes encoding secreted proteins that change in expression during organogenesis, the dynamic secretome, is likely to point to key drivers of morphogenesis. Such secreted proteins are involved in the reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (AM) that occur during organogenesis of the metanephros. Some key metanephric secreted proteins have been identified, but many remain to be determined. In this study, microarray expression profiling of E10.5, E11.5, and E13.5 kidney and consensus bioinformatic analysis were used to define a dynamic secretome of early metanephric development. In situ hybridisation was used to confirm microarray results and clarify spatial expression patterns for these genes. Forty-one secreted factors were dynamically expressed between the E10.5 and E13.5 timeframe profiled, and 25 of these factors had not previously been implicated in kidney development. A text-based anatomical ontology was used to spatially annotate the expression pattern of these genes in cultured metanephric explants.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.
Resumo:
Craniofacial anomalies are a common feature of human congenital dysmorphology syndromes, suggesting that genes expressed in the developing face are likely to play a wider role in embryonic development. To facilitate the identification of genes involved in embryogenesis, we previously constructed an enriched cDNA library by subtracting adult mouse liver cDNA from that of embryonic day (E)10.5 mouse pharyngeal arch cDNA. From this library, 273 unique clones were sequenced and known proteins binned into functional categories in order to assess enrichment of the library (1). We have now selected 31 novel and poorly characterised genes from this library and present bioinformatic analysis to predict proteins encoded by these genes, and to detect evolutionary conservation. Of these genes 61% (19/31) showed restricted expression in the developing embryo, and a subset of these was chosen for further in silico characterisation as well as experimental determination of subcellular localisation based on transient transfection of predicted full-length coding sequences into mammalian cell lines. Where a human orthologue of these genes was detected, chromosomal localisation was determined relative to known loci for human congenital disease.
Resumo:
Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G(1)-S phase and G(2)-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a gatekeeper. In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.
Resumo:
Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide direct evidence for redundant function of Sox17 and Sox18 in postnatal neovascularization by generating Sox17(+/-)-Sox18(-/-) double mutant mice. Whereas Sox18(-/-) and Sox17(+/-)-Sox18(+/)-mice showed no vascular defects, approximately half of the Sox17(+/-)-Sox18(-/-) pups died before postnatal day 21 (P21). They showed reduced neovascularization in the liver sinusoids and kidney outer medulla vasa recta at P7, which most likely caused the ischemic necrosis observed by P14 in hepatocytes and renal tubular epithelia. Those that survived to adulthood showed similar, but milder, vascular anomalies in both liver and kidney, and females were infertile with varying degrees of vascular abnormalities in the reproductive organs. These anomalies corresponded with sites of expression of Sox7 and Sox17 in the developing postnatal vasculature. In vitro angiogenesis assays, using primary endothelial cells isolated from the P7 livers, showed that the Sox17(+/-)-Sox18(-/-)endothelial cells were defective in endothelial sprouting and remodeling of the vasculature in a phenotype-dependent manner. Therefore, our findings indicate that Sox17 and Sox18, and possibly all three SoxF genes, are cooperatively involved in mammalian vascular development.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.
Resumo:
To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.
Resumo:
The goals of this study are to determine relationships between synaptogenesis and morphogenesis within the mushroom body calyx of the honeybee Apis mellifera and to find out how the microglomerular structure characteristic for the mature calyx is established during metamorphosis. We show that synaptogenesis in the mushroom body calycal neuropile starts in early metamorphosis (stages P1-P3), before the microglomerular structure of the neuropile is established. The initial step of synaptogenesis is characterized by the rare occurrence of distinct synaptic contacts. A massive synaptogenesis starts at stage P5, which coincides with the formation of microglomeruli, structural units of the calyx that are composed of centrally located presynaptic boutons surrounded by spiny postsynaptic endings. Microglomeruli are assembled either via accumulation of fine postsynaptic processes around preexisting presynaptic boutons or via ingrowth of thin neurites of presynaptic neurons into premicroglomeruli, tightly packed groups of spiny endings. During late pupal stages (P8-P9), addition of new synapses and microglomeruli is likely to continue. Most of the synaptic appositions formed there are made by boutons (putative extrinsic mushroom body neurons) into small postsynaptic profiles that do not exhibit presynaptic specializations (putative intrinsic mushroom body neurons). Synapses between presynaptic boutons characteristic of the adult calyx first appear at stage P8 but remain rare toward the end of metamorphosis. Our observations are consistent with the hypothesis that most of the synapses established during metamorphosis provide the structural basis for afferent information flow to calyces, whereas maturation of local synaptic circuitry is likely to occur after adult emergence.
Resumo:
The casing layer is an essential component of the system employed in the culture of Agaricus bisporus. The literature appropriate to the casing layer is fully reviewed, including aspects relating to fructification and morphogenesis in A.bisporus, together with an appraisal of the various media employed, their properties and functions, and the commercial significance of the casing layer. Equipment is described for use in experiments in mushroom culture, based on a scaled-down version of normal growing technique, allowing the analysis of both weights and number of fruitbodies forming, which was useful in assessing the effects of different casing treatments. The basic steps in the production of fruitbodies in A.bisporus.are described, including a photographic study of the colonisation of casing and fructification. Various alterations to the physical structure of peat/chalk casing mixtures were found to have an effect on fructification; those causing an opening-out of the casing structure tended to give better yields, especially in the early stages of production. It was shown that, in order to obtain greater yield through casing amendment, fructification must be stimulated, giving increased numbers of fruitbodies, disproportionate to their total weight and consequently of lower mean weight. A synthetic casing medium based on the light glass-like mineral, perlite, was developed. The best formula obtained was -.1 part perlite: 1 part montmorillonite clay (by weight): 3 parts 0.01% glucose solution. Perlite/montmorillonite casing could be improved by adding compost colonised by mycelium of A.bisporus, or adding a peat-chalk casing extract. Perlite was also found to be suitable for admixture with the standard casing medium and a mixture of equal parts by volume performed as well as the peat/chalk casing normally used.
Resumo:
Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.