1000 resultados para MICROFLUIDIC NETWORKS
Resumo:
The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.
Resumo:
An ad hoc network is composed of mobile nodes without any infrastructure. Recent trends in applications of mobile ad hoc networks rely on increased group oriented services. Hence multicast support is critical for ad hoc networks. We also need to provide service differentiation schemes for different group of users. An efficient application layer multicast (APPMULTICAST) solution suitable for low mobility applications in MANET environment has been proposed in [10]. In this paper, we present an improved application layer multicast solution suitable for medium mobility applications in MANET environment. We define multicast groups with low priority and high priority and incorporate a two level service differentiation scheme. We use network layer support to build the overlay topology closer to the actual network topology. We try to maximize Packet Delivery Ratio. Through simulations we show that the control overhead for our algorithm is within acceptable limit and it achieves acceptable Packet Delivery Ratio for medium mobility applications.
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
My doctoral dissertation in sociology and Russian studies, Social Networks and Everyday Practices in Russia, employs a "micro" or "grassroots" perspective on the transition. The study is a collection of articles detailing social networks in five different contexts. The first article examines Russian birthdays from a network perspective. The second takes a look at health care to see whether networks have become obsolete in a sector that is still overwhelmingly public, but increasingly being monetarised. The third article investigates neighbourhood relations. The fourth details relationships at work, particularly from the vantage point of internal migration. The fifth explores housing and the role of networks and money both in the Soviet and post-Soviet era. The study is based on qualitative social network and interview data gathered among three groups, teachers, doctors and factory workers, in St. Petersburg during 1993-2000. Methodologically it builds on a qualitative social network approach. The study adds a critical element to the discussion on networks in post-socialism. A considerable consensus exists that social networks were vital in state socialist societies and were used to bypass various difficulties caused by endemic shortages and bureaucratic rigidities, but a more debated issue has been their role in post-socialism. Some scholars have argued that the importance of networks has been dramatically reduced in the new market economy, whereas others have stressed their continuing importance. If a common denominator in both has been a focus on networks in relation to the past, a more overlooked aspect has been the question of inequality. To what extent is access to networks unequally distributed? What are the limits and consequences of networks, for those who have access, those outside networks or society at large? My study provides some evidence about inequalities. It shows that some groups are privileged over others, for instance, middle-class people in informal access to health care. Moreover, analysing the formation of networks sheds additional light on inequalities, as it highlights the importance of migration as a mechanism of inequality, for example. The five articles focus on how networks are actually used in everyday life. The article on health care, for instance, shows that personal connections are still important and popular in post-Soviet Russia, despite the growing importance of money and the emergence of "fee for service" medicine. Fifteen of twenty teachers were involved in informal medical exchange during a two-week study period, so that they used their networks to bypass the formal market mechanisms or official procedures. Medicines were obtained through personal connections because some were unavailable at local pharmacies or because these connections could provide medicines for a cheaper price or even for free. The article on neighbours shows that "mutual help" was the central feature of neighbouring, so that the exchange of goods, services and information covered almost half the contacts with neighbours reported. Neighbours did not provide merely small-scale help but were often exchange partners because they possessed important professional qualities, had access to workplace resources, or knew somebody useful. The article on the Russian work collective details workplace-related relationships in a tractor factory and shows that interaction with and assistance from one's co-workers remains important. The most interesting finding was that co-workers were even more important to those who had migrated to the city than to those who were born there, which is explained by the specifics of Soviet migration. As a result, the workplace heavily influenced or absorbed contexts for the worker migrants to establish relationships whereas many meeting-places commonly available in Western countries were largely absent or at least did not function as trusted public meeting places to initiate relationships. More results are to be found from my dissertation: Anna-Maria Salmi: Social Networks and Everyday Practices in Russia, Kikimora Publications, 2006, see www.kikimora-publications.com.
Resumo:
The problem of admission control of packets in communication networks is studied in the continuous time queueing framework under different classes of service and delayed information feedback. We develop and use a variant of a simulation based two timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an optimal feedback policy within the class of threshold type policies. Even though SPSA has originally been designed for continuous parameter optimization, its variant for the discrete parameter case is seen to work well. We give a proof of the hypothesis needed to show convergence of the algorithm on our setting along with a sketch of the convergence analysis. Extensive numerical experiments with the algorithm are illustrated for different parameter specifications. In particular, we study the effect of feedback delays on the system performance.
Resumo:
We report on a search for the standard model Higgs boson produced in association with a $W$ or $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb$^{-1}$. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a $b$ hadron. We find good agreement between data and predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110$\gevm$ to 150$\gevm$. For a mass of 115$\gevm$ the observed (expected) limit is 6.9 (5.6) times the standard model prediction.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Query incentive networks capture the role of incentives in extracting information from decentralized information networks such as a social network. Several game theoretic tilt:Kids of query incentive networks have been proposed in the literature to study and characterize the dependence, of the monetary reward required to extract the answer for a query, on various factors such as the structure of the network, the level of difficulty of the query, and the required success probability.None of the existing models, however, captures the practical andimportant factor of quality of answers. In this paper, we develop a complete mechanism design based framework to incorporate the quality of answers, in the monetization of query incentive networks. First, we extend the model of Kleinberg and Raghavan [2] to allow the nodes to modulate the incentive on the basis of the quality of the answer they receive. For this qualify conscious model. we show are existence of a unique Nash equilibrium and study the impact of quality of answers on the growth rate of the initial reward, with respect to the branching factor of the network. Next, we present two mechanisms; the direct comparison mechanism and the peer prediction mechanism, for truthful elicitation of quality from the agents. These mechanisms are based on scoring rules and cover different; scenarios which may arise in query incentive networks. We show that the proposed quality elicitation mechanisms are incentive compatible and ex-ante budget balanced. We also derive conditions under which ex-post budget balance can beachieved by these mechanisms.
Resumo:
We present a new computationally efficient method for large-scale polypeptide folding using coarse-grained elastic networks and gradient-based continuous optimization techniques. The folding is governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method we are able to substantially reduce the computation time on ordinary desktop computers for simulation of polypeptide folding starting from a fully unfolded state. We compare our results with available native state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins, Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small de-novo protein, Chignolin. We also use two well known protein structure prediction software, MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal elastic network model can lead to higher accuracy and lower time required for simulation.
Resumo:
We view association of concepts as a complex network and present a heuristic for clustering concepts by taking into account the underlying network structure of their associations. Clusters generated from our approach are qualitatively better than clusters generated from the conventional spectral clustering mechanism used for graph partitioning.
Resumo:
Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.
Resumo:
In this thesis work, we design rigorous and efficient protocols/mechanisms for different types of wireless networks using a mechanism design [1] and game theoretic approach [2]. Our work can broadly be viewed in two parts. In the first part, we concentrate on ad hoc wireless networks [3] and [4]. In particular, we consider broadcast in these networks where each node is owned by independent and selfish users. Being selfish, these nodes do not forward the broadcast packets. All existing protocols for broadcast assume that nodes forward the transit packets. So, there is need for developing new broadcast protocols to overcome node selfishness. In our paper [5], we develop a strategy proof pricing mechanism which we call immediate predecessor node pricing mechanism (IPNPM) and an efficient new broadcast protocol based on IPNPM. We show the efficacy of our proposed broadcast protocol using simulation results.