907 resultados para MHV viruses
Resumo:
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A total of 36 compounds (1-36) were obtained from the stem bark of Poncirus trifoliata including three new prenylated flavonoids, (-)-5,4'-dihydroxy-7,8-[(3 '',4 ''-cis-dihydroxy-3 '',4 ''-dihydro)-2 '',2 ''-dimethylpyrano]-flavone (1), (-)-5,4'-dihydroxy-7,8-[(3 ''-hydroxy-4 ''-one)-2 '',2 ''-dimethylpyrano]-flavone (2), and (-)-5,4'-dihydroxy-7,8-[(cis-3 ''-hydroxy-4 ''-ethoxy-3 '',4 ''-dihydro)-2 '',2 ''-dimethylpyrano]-flavone (3). The new structures were elucidated by means of spectroscopic methods. Compounds 1-20 were evaluated for their anti-human immunodeficiency virus-1 (HIV-1) activity, in which 2 showed significant anti-HIV-1 activity with high therapeutic index (T1) of 143.65.
Resumo:
Whether mice perceive the depth of space dependent on the visual size of object targets was explored when visual cues such as perspective and partial occlusion in space were excluded. A mouse was placed on a platform the height of which is adjustable. The platform located inside a box in which all other walls were dark exception its bottom through that light was projected as a sole visual cue. The visual object cue was composed of 4x4 grids to allow a mouse estimating the distance of the platform relative to the grids. Three sizes of grids reduced in a proportion of 2/3 and seven distances with an equal interval between the platform and the grids at the bottom were applied in the experiments. The duration of a mouse staying on the platform at each height was recorded when the different sizes of the grids were presented randomly to test whether the Judgment of the mouse for the depth of the platform from the bottom was affected by the size information of the visual target. The results from all conditions of three object sizes show that time of mice staying on the platform became longer with the increase in height. In distance of 20 similar to 30 cm, the mice did not use the size information of a target to judge the depth, while mainly used the information of binocular disparity. In distance less than 20 cm or more than 30 cm, however, especially in much higher distance 50 cm, 60 cm and 70 cm, the mice were able to use the size information to do so in order to compensate the lack of binocular disparity information from both eyes. Because the mice have only 1/3 of the visual field that is binocular. This behavioral paradigm established in the current study is a useful model and can be applied to the experiments using transgenic mouse as an animal model to investigate the relationships between behaviors and gene functions.
Resumo:
<正> 藻类细胞的溶解现象,无论在自然界或者实验室中早已引起人们的注意,但病毒性溶解因子直到1963年才首次在蓝藻中得到证实。十几年来,有关这类病毒的研究报告和综述已近200篇。在这些文献中采用了藻病毒(Phycoviruses),蓝藻病毒(Blue-green viruses,Cyanoviruses)、噬蓝藻体(Cyanophage)、噬藻体(Algophage)等名称。鉴于这类病毒与噬菌体之间若干相似性,同时在红藻、绿藻、褐藻和轮藻中也有类似病毒颗粒的报道,我们认为采用噬藻体为宜,它既反映了病毒本身
Resumo:
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.
Resumo:
Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.
Resumo:
The presence of thymidine kinase (TK) is a feature of many large DNA viruses. Here, a TK gene homologue was cloned and characterized from Rana grylio virus (RGV), a member of family Iridoviridae. RGV TK encodes a protein of 195 aa with a predicted molecular mass of 22.1 kDa. Homologues of the protein were present in all the currently sequenced iridoviruses, and phylogenetic analysis showed that it was much close to cellular TK type 2 (TK2), deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Subsequently, Western blotting revealed TK expression increased with time from 6 h post-infection in RGV-infected cells. Using drug inhibition analysis by protein synthesis inhibitor (cycloheximide) and DNA replication inhibitor (cytosine arabinofuranoside), RGV TK was classified as the early expression gene during in vitro infection. Subcellular localization by TK-GFP fusion protein expression and immunofluorescence staining showed RGV TK was an exclusively cytoplasmic protein in fish cells. Collectively, current data indicate that RGV TK was an early gene of iridovirus which encoded a cytoplasmic protein in fish cells.
Resumo:
Double-stranded RNA-activated protein kinase (PKR) plays an important rote in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In the present study, a PKR-like gene was cloned and characterized from rare minnow Gobiocypris rarus. The full length of the rare minnow PKR-like (GrPKZ) cDNA is 1946 bp in Length and encodes a polypeptide of 503 amino acids with an estimated molecular mass of 57,355 Da and a predicted isoelectric point of 5.83. Analysis of the deduced amino acid sequence indicated that the mature peptide contains two Zalpha domains and one S_TKc domain, and is most similar to the crucian carp (Carassius auratus) PKR-like amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed that GrPKZ mRNA expression is at low levels in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus, GrPKZ expression was up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). Following infection with Aeromonas hydrophila, GrPKZ transcripts were induced at 24 h post-injection (P < 0.05) and returned to control levels at 120 h post-injection. These data imply that GrPKZ is involved in antiviral defense and Toll-like receptor 4 signaling pathway in bacterial infection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
Environmental mechanism of change in cyanobacterial species composition in the northeastern part of Lake Dianchi (also called Macun Bay and Haidong Bay) was studied using canonical correlation analysis (CCA), but also bottom-up control and top-down control were fully discussed. Results from CCA suggest: (1) the abundance and dominance of Microcystis aeruginosa in Macun Bay and Haidong Bay are influenced by total phosphorus (TP), nitrate (NO3--N), nitrite (NO2--N), dissolved oxygen (DO) and water temperature (WT); (2) water temperature has a positive correlation with the abundance of M. aeruginosa and it also has negative correlations with the abundances of Anabaena flos-aquae and Aphanizomenonon flos-aquae; and (3) abundances of both Anabaena flos-aquae and Aphanizomenon flos-aquae have positive correlations with ammonia-N (NH4+-N). Furthermore, cyanobacterial species composition has no significant correlations with light and size-fractioned iron in this study. Grazers, cyanophages and viruses were able to control cyanobacterial blooms and change the composition of cyanobacterial species. Though we studied physical and chemical factors intensely enough, we still are not able to predict the change in the composition of cyanobacterial blooms, because of plankton system in a chaotic behavior.
Resumo:
The spatial distribution and morphological diversity of virioplankton were determined in Lake Donghu which contains three trophic regions: hypertrophic, eutrophic and mesotrophic region. Virioplankton abundance measured by transmission electron microscope (TEM) ranged from 7.7 x 10(8) to 3.0 x 109 ml(-1), being among the highest observed in any natural aquatic system examined so far. The spatial distribution of virioplankton was correlated significantly with chlorophyll a concentration (r = 0.847; P < 0.01) at the sampling sites in Lake Donghu. 76 morphotypes were observed. Most morphotypes have tails, belonging to Siphoviridae, Myoviridae and Podoviridae. The majority of tailed phages in the lake were Myoviridae. Morphotypes which were rarely reported, such as prolate-headed virus-like particles, lemon-shaped virus-like particle, and viruses resembling Tectiviridae and Corticoviridae were all observed in the lake. It is concluded that the high viral abundance might be associated with high density of phytoplankton including algae and cyanobacteria. There was high viral diversity in this eutrophic shallow lake. In addition, cyanophage represented an important fraction of the virioplankton community in Lake Donghu. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
Lake Donghu is a typical eutrophic freshwater lake in which high abundance of planktonic viruses was recently revealed. In this study, seasonal variation of planktonic viruses were observed at three different trophic sites, hypertrophic, eutrophic, and mesotrophic regions, and the correlation between their abundances and other aquatic environmental components, such as bacterioplankton, chlorophyll a, burst size, pH, dissolved oxygen, and temperature, was analyzed for the period of an year. Virioplankton abundance detected by transmission electron microscope (TEM) ranged from 5.48 x 10(8) to 2.04 x 10(9) ml(-1) in all the sites throughout the study, and the high abundances and seasonal variations of planktonic viruses were related to the trophic status at the sampled sites in Lake Donghu. Their annual mean abundances were, the highest at the hypertrophic site (1.23x10(9) ml(-1)), medium at the eutrophic site (1.19x10(9) ml(-1)), and the lowest at the mesotrophic site (1.02x10(9) ml(-1)). The VBR (virus-to-bacteria ratio) values were high, ranging from 49 to 56 on average at the three sampled sites. The data suggested that the high viral abundance and high VBR values might be associated with high density of phytoplankton including algae and cyanobacteria in this eutrophic shallow lake, and that planktonic viruses are important members of freshwater ecosystems.
Resumo:
The fp25k gene of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) was studied. HearNPV fp25k gene transcription was found starting from about 18 h post-infection, and protein could be detected from the same time with antiserum against FP25K. To study the function of HearNPV fp25k, a recombinant HearNPV (HaBacWD11) with an enhanced green fluorescent protein (GFP) gene replacing the fp25k was constructed using HaBacHZ8, a bacmid of HearNPV that lacks the polyhedrin gene. Growth curve analysis showed that HaBacWD11 produced higher titres of budded viruses (BVs) than its wild-type counterpart HaBacHZ8-GFP. Electron microscopic analysis indicated that at the late stage of infection, the number of intranuclear enveloped nucleocapsids in HaBacWD11-infected cells was much less than that of HaBacHZ8-GFP. A rescue recombinant virus HaBacWD14 was constructed by reintroducing fp25k gene into HaBacWD11. The growth curve and electron microscopic analysis of the rescued recombinant confirmed that the increase of BV yield and the decrease of the virion production in infected cells were the result of fp25k deletion. The expression of membrane fusion protein (Ha133) and ODV-E66 were studied using the FP25K mutants HaBacWD11 and HaBacHZ8-GFP. Unlike FP25K mutants in Autographa californica multicapsid NPV (AcMNPV), which caused an increase in the expression of membrane fusion protein GP64 and a decrease of ODV-E66, no obvious changes at the expression level of Ha133 and ODV-E66 were observed in HearNPV FP25K mutant.