991 resultados para MEAN STATE
Resumo:
The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.
Resumo:
The study of non-Newtonian flow in plate heat exchangers (PHEs) is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50 degrees chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 <= T <= 85.8 degrees C) and soluble solids content (11.0 <= X(s) <= 52.4 degrees Brix). The Ostwald-de Waele (power law) model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 <= Re(g) <= 1230) and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as T(g) and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 +/- 0.24 cm(3) min(-1) per 100 g of non-frozen dough and 2.22 +/- 0.12 cm(3) min(-1) per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the minimization of the mean absolute deviation from a common due date in a two-machine flowshop scheduling problem. We present heuristics that use an algorithm, based on proposed properties, which obtains an optimal schedule fora given job sequence. A new set of benchmark problems is presented with the purpose of evaluating the heuristics. Computational experiments show that the developed heuristics outperform results found in the literature for problems up to 500 jobs. (C) 2007 Elsevier Ltd. All rights reserved.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
In this paper, we devise a separation principle for the finite horizon quadratic optimal control problem of continuous-time Markovian jump linear systems driven by a Wiener process and with partial observations. We assume that the output variable and the jump parameters are available to the controller. It is desired to design a dynamic Markovian jump controller such that the closed loop system minimizes the quadratic functional cost of the system over a finite horizon period of time. As in the case with no jumps, we show that an optimal controller can be obtained from two coupled Riccati differential equations, one associated to the optimal control problem when the state variable is available, and the other one associated to the optimal filtering problem. This is a separation principle for the finite horizon quadratic optimal control problem for continuous-time Markovian jump linear systems. For the case in which the matrices are all time-invariant we analyze the asymptotic behavior of the solution of the derived interconnected Riccati differential equations to the solution of the associated set of coupled algebraic Riccati equations as well as the mean square stabilizing property of this limiting solution. When there is only one mode of operation our results coincide with the traditional ones for the LQG control of continuous-time linear systems.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
The recent claim that the exit probability (EP) of a slightly modified version of the Sznadj model is a continuous function of the initial magnetization is questioned. This result has been obtained analytically and confirmed by Monte Carlo simulations, simultaneously and independently by two different groups (EPL, 82 (2008) 18006; 18007). It stands at odds with an earlier result which yielded a step function for the EP (Europhys. Lett., 70 (2005) 705). The dispute is investigated by proving that the continuous shape of the EP is a direct outcome of a mean-field treatment for the analytical result. As such, it is most likely to be caused by finite-size effects in the simulations. The improbable alternative would be a signature of the irrelevance of fluctuations in this system. Indeed, evidence is provided in support of the stepwise shape as going beyond the mean-field level. These findings yield new insight in the physics of one-dimensional systems with respect to the validity of a true equilibrium state when using solely local update rules. The suitability and the significance to perform numerical simulations in those cases is discussed. To conclude, a great deal of caution is required when applying updates rules to describe any system especially social systems. Copyright (C) EPLA, 2011
Resumo:
The aim of this paper is to present an economical design of an X chart for a short-run production. The process mean starts equal to mu(0) (in-control, State I) and in a random time it shifts to mu(1) > mu(0) (out-of-control, State II). The monitoring procedure consists of inspecting a single item at every m produced ones. If the measurement of the quality characteristic does not meet the control limits, the process is stopped, adjusted, and additional (r - 1) items are inspected retrospectively. The probabilistic model was developed considering only shifts in the process mean. A direct search technique is applied to find the optimum parameters which minimizes the expected cost function. Numerical examples illustrate the proposed procedure. (C) 2009 Elsevier B.V. All rights reserved.