981 resultados para MASSIVE NUCLEI
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated
Resumo:
Os Massive Open Online Courses (MOOC) consistem em cursos online abertos e, normalmente gratuitos, que permitem a inscrição de um elevado número de participantes. A adesão a esta modalidade de educação, normalmente informal, foi o principal repto para propor uma oficina de formação, totalmente online. Com esta formação pretendeu-se fornecer as competências necessárias para que professores se sentissem capacitados para criar e distribuir os seus próprios MOOC. No presente trabalho recorre-se à metodologia de estudo de caso e procura-se inicialmente apresentar, através de pesquisa bibliográfica, a revisão de literatura relativamente aos MOOC. Posteriormente, com base nos dados obtidos pela observação participante e inquérito por questionário, evidenciam-se os principais resultados da oficina de formação online “MOOC: uma tecnologia educativa de futuro.
Resumo:
We present the case of a 55-year-old man, with a self-limited febrile condition associated to polyserositis with inconclusive investigation. Bilateral pleural and pericardial effusions resolved. The peritoneal fluid loculated and was compatible with an exudate. The patient remained clinically asymptomatic. Two years later, examination revealed a palpable and painless abdominal mass, which imaging study suggested a cystic lesion. Surgical resection was performed and the histological examination revealed a mesenteric pseudocyst. Mesenteric pseudocysts are rare intra-abdominal cystic masses, mostly benign, without causing specific symptoms. Although imaging tests are useful for their differential diagnosis, the histology is mandatory.
Resumo:
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.
Resumo:
We exploit the possibility of new configurations in three-body halo nuclei, Samba type (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei Be-12, B-15, N-23 and F-27 are of such nature, in particular N-23 with a half-life of 37.7 s and a halo radius of 6.07 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus He-6 + U-238.
Resumo:
The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.
Resumo:
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
Resumo:
Background: Nowadays, there are very few studies about massive transfusion in our country. This situation generates the necessity to the elevation of possible new strategies to diminish mortality and its adverse effects. Material and methods: All massive transfusions were evaluated in a retrospective way from October 2010 to October 2012. All diagnosis groups were recorded and the patients were divided into three groups depending on the ratio between packed red blood cells (PRBC) and fresh frozen plasma (FFP) units (ratios ≤2, >2, and without FFP). Their mortality and/or survival were evaluated 30 days after as well as all the factors associated with the event. Results: A total of 69 patients were included (37 trauma patients, 28 gunshot wounds and 4 with lacerated wounds); the groups (ratios ≤2, >2, and no plasma at all) were distributed as follows: 30, 30 and 9 patients each, with an overall mortality rate of 60.8% within 30 days. A lower survival rate (12%) in the no plasma group (P=.015) was found and systolic blood pressure during transfusion had a mean of 67.7 mmHg (P=.012) in this group. Fresh frozen plasma units were 136 and 249 for >2 and ≤2 ratios respectively (P<.01); 85.5% of all patients developed metabolic acidosis during the transfusion, and the number of days in the hospital after the event had a mean of 24.5 days in all patients. Conclusions: High rates of massive transfusion mortality are still being reported in our ield. The use of transfusion strategies contribute to elevate the survival rate in patients with massive transfusion treatment
Resumo:
Background: It is important that the residual bowel adapts after massive resection. The necessary intestinal adaptation is a progressive recovery from intestinal failure through increase in absorptive surface area and functional capacity and includes both morphological and functional adaptations. Objectives: The aim of this study was to investigate intestinal morphological and functional adaptations of small bowel syndrome (SBS) model rats (SBS1W) 7 days after bowel resection. Materials and Methods: Male sprague–dawley rats (n = 20/group) underwent either a 75% proximal small bowel resection (SBS1W group) or a control operation (control group). Markers of morphological adaptation were revealed by TEM analysis of H&E-stained tissue samples. The intestinal barrier condition was assessed by BT, and sIgA concentration in intestinal mucus was measured by ELISA. Contractility and the slow wave rhythm of the entire intestinal remnant were measured and recorded. Results: The SBS1W group experienced more weight loss than control group and had a clearly different intestinal morphology as revealed in TEM images. Compared with control rats, the SBS1W group had a lower sIgA concentration in intestinal mucus and higher BT to lymph nodes (70% vs 40%; level I), portal blood (40% vs 10%; level II), and peripheral blood (60% vs 30%; level III). Disorder of spontaneous rhythmic contraction, irregular amplitude, and slow frequency were detected in the SBS1W group by a muscle strips test. Similarly, the slow wave of the entire intestinal remnant in the SBS1W group was irregular and uncoordinated. Conclusions: The finding of intestinal adaptation following massive SBR in SBS1W rats provides more understanding of the mechanisms of progressive recovery from the intestinal failure that underlies SBS. The mechanical, chemical, immunological, and biological barriers were all impaired at 7 days following bowel resection, indicating that the SBS model rats were still in the intestinal adaptation phase.
Resumo:
Numerose osservazioni astrofisiche e cosmologiche compiute a partire dagli anni '30 confermano che circa il 26% dell'Universo è costituito da materia oscura. Tale materia ha la particolarità di interagire solo gravitazionalmente e, forse, debolmente: essa si presenta massiva e neutra. Tra le numerose ipotesi avanzate riguardanti la natura della materia oscura una delle più accreditate è quella delle WIMP (Weakly Interacting Massive Particle). Il progetto all'avanguardia nella ricerca diretta delle WIMP è XENON presso i Laboratori Nazionali del Gran Sasso (LNGS). Tale esperimento è basato sulla diffusione elastica delle particelle ricercate su nuclei di Xeno: il rivelatore utilizzato è una TPC a doppia fase (liquido-gas). La rivelazione diretta di materia oscura prevede l'impiego di un rivelatore molto grande, a causa della piccola probabilità di interazione, e di ambienti a bassa radioattività naturale, per ridurre al minimo il rumore di fondo. Risulta necessario inoltre l'utilizzo di uno schermo attivo che individui particelle di alta energia, in particolare muoni cosmici, che possono produrre falsi segnali. È stato realizzato a tale scopo un sistema di Muon Veto composto da un grande cilindro d'acqua posto attorno alla TPC, equipaggiato con 84 fotorivelatori atti ad osservare i fotoni ottici emessi per effetto Čherenkov dai raggi cosmici. Il presente lavoro di tesi si colloca nell'ambito di un programma di simulazione Monte Carlo, creato per realizzare virtualmente l'esperimento XENON1T e per effettuare studi preliminari. Lo scopo di tale lavoro è stato quello di contribuire alla scrittura e alla verifica del codice di simulazione e allo studio di eventi di muoni cosmici da esso generati. L'analisi dati è stata effettuata scrivendo un programma in C++ in grado di analizzare i risultati forniti dal simulatore e di generare degli Event Display statici e dinamici per una visualizzazione efficace degli eventi.
Resumo:
El objetivo fundamental es continuar con la creación de un Massive Open OnlineCourse (MOOC) de narrativa audiovisual diseñado por profesorado y alumnado elaborando materiales videográficos e hipermedia innovadores para su difusión abierta.
Resumo:
Expression patterns of group I (mGluR1α and mGluR5)and group II (mGluR2/3) metabotropic glutamate receptor subtypes were examined immunocytochemically in the trigeminal system of mice during the first 3 weeks of postnatal development, when somatotopic whisker representations are sequentially established from brainstem through thalamus to cerebral cortex. Immunostaining for all three epitopes formed whisker-related patterns in the trigeminal nuclei from postnatal day (P) 0, in the ventral posterior thalamic nucleus from P2, and in the posteromedial barrel subfield of somatosensory cortex (SI) from P4. The appearance of whisker-related patterns was preceded by increased levels of immunostaining of the neuropil, which subsequently declined from the trigeminal nuclei upward. In SI, mGluR1α-positive neurons were observed in all cortical layers from P2. mGluR5 was localized in neurons, glial cells, and neuropil from P2. mGluR2/3 immunostaining was distributed only in the neuropil at all ages. The three receptor subtypes showed moderate to high expression in deep layer V throughout development. Transient expression peaked in the hollows of layer IV barrels from P4 to P9, and then fell off as expression increased in supragranular layers from P14 to P21. The deep aspect of the cortical subplate (layer VIb) showed dense mGluR5 and less dense mGluR1α immunostaining throughout development. Up-regulation of expression of group I and II mGluRs is correlated with the growth and refinement of connectivity and the establishment of somatotopic patterns in the three main relay stations of the trigeminal system. This finding suggests roles for mGluRs in the early processing of sensory information and in developmental plasticity.
Resumo:
Over the past decades star formation has been a very attractive field because knowledge of star formation leads to a better understanding of the formation of planets and thus of our solar system but also of the evolution of galaxies. Conditions leading to the formation of high-mass stars are still under investigation but an evolutionary scenario has been proposed: As a cold pre-stellar core collapses under gravitational force, the medium warms up until it reaches a temperature of 100 K and enters the hot molecular core (HMC) phase. The forming central proto-star accretes materials, increasing its mass and luminosity and eventually it becomes sufficiently evolved to emit UV photons which irradiate the surrounding environment forming a hyper compact (HC) and then a ultracompact (UC) HII region. At this stage, a very dense and very thin internal photon-dominated region (PDR) forms between the HII region and the molecular core. Information on the chemistry allows to trace the physical processes occurring in these different phases of star formation. Formation and destruction routes of molecules are influenced by the environment as reaction rates depend on the temperature and radiation field. Therefore, chemistry also allows the determination of the evolutionary stage of astrophysical objects through the use of chemical models including the time evolution of the temperature and radiation field. Because HMCs host a very rich chemistry with high abundances of complex organic molecules (COMs), several astrochemical models have been developed to study the gas phase chemistry as well as grain chemistry in these regions. In addition to HMCs models, models of PDRs have also been developed to study in particular photo-chemistry. So far, few studies have investigated internal PDRs and only in the presence of outflows cavities. Thus, these unique regions around HC/UCHII regions remain to be examined thoroughly. My PhD thesis focuses on the spatio-temporal chemical evolution in HC/UC HII regions with internal PDRs as well as in HMCs. The purpose of this study is first to understand the impact and effects of the radiation field, usually very strong in these regions, on the chemistry. Secondly, the goal is to study the emission of various tracers of HC/UCHII regions and compare it with HMCs models, where the UV radiation field does not impact the region as it is immediately attenuated by the medium. Ultimately we want to determine the age of a given region using chemistry in combination with radiative transfer.
Resumo:
The correlations between the evolution of the Super Massive Black Holes (SMBHs) and their host galaxies suggests that the SMBH accretion on sub-pc scales (active galactice nuclei, AGN) is linked to the building of the galaxy over kpc scales, through the so called AGN feedback. Most of the galaxy assembly occurs in overdense large scale structures (LSSs). AGN residing in powerful sources in LSSs, such as the proto-brightest cluster galaxies (BCGs), can affect the evolution of the surrounding intra-cluster medium (ICM) and nearby galaxies. Among distant AGN, high-redshift radio-galaxies (HzRGs) are found to be excellent BCG progenitor candidates. In this Thesis we analyze novel interferometric observations of the so-called "J1030" field centered around the z = 6.3 SDSS Quasar J1030+0524, carried out with the Atacama large (sub-)millimetre array (ALMA) and the Jansky very large array (JVLA). This field host a LSS assembling around a powerful HzRG at z = 1.7 that shows evidence of positive AGN feedback in heating the surrounding ICM and promoting star-formation in multiple galaxies at hundreds kpc distances. We report the detection of gas-rich members of the LSS, including the HzRG. We showed that the LSS is going to evolve into a local massive cluster and the HzRG is the proto-BCG. we unveiled signatures of the proto-BCG's interaction with the surrounding ICM, strengthening the positive AGN feedback scenario. From the JVLA observations of the "J1030" we extracted one of the deepest extra-galactic radio surveys to date (~12.5 uJy at 5 sigma). Exploiting the synergy with the X-ray deep survey (~500 ks) we investigated the relation of the X-ray/radio emission of a X-ray-selected sample, unveiling that the radio emission is powered by different processes (star-formation and AGN), and that AGN-driven sample is mostly composed by radio-quiet objects that display a significant X-ray/radio correlation.