920 resultados para MALATE DEHYDROGENASE
Resumo:
A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.
Resumo:
Electrochemiluminescence (ECL) of tris(2,2'-bipyridyl) ruthenium [Ru(bpy)(3)(2+)] has received considerable attention. By immobilizing Ru(bpy)(3)(2+) on an e electrode surface, solid-state ECL provides several advantages over solution-phase ECL, such as reducing consumption of expensive reagent, simplifying experimental design and enhancing the ECL signal.This review presents the state of the art in solid-state ECL of Ru(bpy)(3)(2+).
Resumo:
Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).
Resumo:
The size-controlled synthesis of monodispersed gold nanoparticles (AuNPs) stabilized by polyelectrolyte-functionalized ionic liquid (PFIL) is described. The resulting AuNPs' size, with a narrow distribution, can be tuned by the concentration of HAuCl4. Such PFIL-stabilized AuNPs (PFIL-AuNPs) showed a high stability in water at room temperature for at least one month; they were also quite stable in solutions of pH 7-13 and high concentration of NaCl.
Resumo:
A novel Ruthenium(II) tris(bipyridine)-based solid-state electrochemiluminescence (ECL) sensor was developed in this paper. The sensor was fabricated by immobilising tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) in sulfonic-functionalised porous titania (TiO2-SO3H) nanoparticles via an ion exchange strategy, followed by employing environment friendly and stable biopolymer chitosan (CHIT) to entrap Ru(bpy)(3)(2+)/TiO2-SO3H onto the ITO electrode.
Resumo:
In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.
Resumo:
We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.
Resumo:
This study demonstrates a novel compartment-less glucose/O-2 biofuel cell (BFC) based on highly ordered mesoporous carbons (OMCs) with three-dimensionally (3D) interconnected and ordered pore structures. OMCs are used as supports for both stably confining the electrocatalyst (i.e., meldola's blue, MDB) for NADH oxidation and the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose oxidation, and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase, LAC) for O-2 electroreduction. In 0.10 M pH 6.0 PBS containing 20 mM NAD(+) and 60 mM glucose under the air-saturated atmosphere, the open circuit voltage (0.82 V) and the maximum power output (38.7 mu W cm(-2) (at 0.54V)) of the assembled compartment-less OMCs-based BFC are both higher than those of carbon nanotubes (CNTs)-based BFC (0.75 V and 2.1 mu W cm(-2) (at 0.46 V)).
Resumo:
Through a new and simple ion-exchange route, two-electron redox mediator thionine has been deliberately incorporated into the carbon nanotubes (CNTs)/Nafion composite film due to the fact that there is strong interaction between any of two among the three materials (ion-exchange process between thionine and Nafion, strong adsorption of thionine by CNTs, and wrapping and solubilizing of CNTs with Nation). The good homogenization of electron conductor CNTs in the integrated films provides the possibility of three-dimensional electron conductive network. The resulting integrated films exhibited high and stable electrocatalytic activity toward NADH oxidation with the significant decrease of high overpotential, which responds more sensitively more than those modified by thioine or CNTs alone. Such high electrocatalytic activity facilitated the low potential determination of NADH (as low as -0.1 V), which eliminated the interferences from other easily oxidizable species. In a word, the immobilization approach is very simple, timesaving and effective, which could be extended to the immobilization of other cationic redox mediators into the CNTs/Nafion composite film. And these features may offer potential promise for the design of amperometric biosensors.
Resumo:
The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.
Resumo:
The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.
Resumo:
A poly(thionine) modified screen-printed carbon electrode has been prepared by an electrooxidative polymerization of thionine in neutral phosphate buffer. The modified electrodes are found to give stable and reproducible electrocatlytic responses to NADH and exhibit good stability. Several techniques, including cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), have been employed to characterize the poly(thionine) film. Further, the modified screen-printed carbon electrode was found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 5-100 muM.
Resumo:
The interaction of MP-11 as a model of antioxidatase enzymes with La3+ was investigated. It was found that La3+ can increase in the non-planarity of heme and the content of alpha helix and beta turn conformations of the MP11 molecule. The change in the secondary structure of the MP-11 molecule can increase in the exposure extent of heme to the solution. Therefore, the electrochemical reaction of MP-11 is promoted and the electrocatalytic activity to the reduction of H2O2 is increased. The results are consistent with that for the interaction of peroxidases(POD), one of the antioxidatase enzymes, obtained in the living plant experiments at low concentration of La3+.
Resumo:
Eastman-AQ 55D was coated onto a carbon fiber microelectrode surface, and the resulting modified electrodes exhibited high stability. Substantial improvement in the stability was observed as a result of good adhesion and the strong binding of large hydrophobic cations of Eastman AQ 55D. The electrode reaction of meldola blue bound in the polymer film showed a reversible, one-electron transfer process. The effects of solution pH and influence of supporting electrolyte on the modified carbon fiber microelectrode are discussed. The diffusion coefficient of meldola blue in the AQ polymer film determined by chronoamperometry is 2.3 x 10(-18) cm(2) s(-1), and the heterogeneous rate constant of meldola blue at the AQ polymer film/electrode determined by normal pulse voltammetry is 3.97 x 10(-3) cms(-1).
Resumo:
Twelve mediators have been modified by adsorption onto the paraffin impregnated graphite electrodes (IGE). The resulting electrodes exhibit electrocatalytic activity of different degrees towards oxidation of 1,4-dihydronicotinamide adenine dinucleotide (NADH). The electrocatalytic ability of the chemically modified electrode (CME) depends mainly on the formal potential and molecular structure of mediator. The formation of the charge transfer complex between NADH and adsorbed mediator has been demonstrated by the experiments using a rotating disk electrode. An electrocatalytic scheme obeying Michaelis-Menten kinetics has been confirmed, and some kinetic parameters were estimated. The solution pH influences markedly the electrocatalytic activity of the modified electrode. Various possible reasons are discussed.