929 resultados para Lung Tuberculosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Prolonged limb ischemia followed by reperfusion (I/R) is associated with a systemic inflammatory response syndrome and remote acute lung injury. Ischemic preconditioning (IPC), achieved with repeated brief periods of I/R before the prolonged ischemic period, has been shown to protect skeletal muscle against ischemic injury. The aim of this study was to ascertain whether IPC of the limb before I/R injury also attenuates systemic inflammation and acute lung injury in a fully resuscitated porcine model of hind limb I/R. Methods: This prospective, randomized, controlled, experimental animal study was performed in a university-based animal research facility with 18 male Landrace pigs that weighed from 30 to 35 kg. Anesthetized ventilated swine were randomized (n = 6 per group) to three groups: sham-operated control group, I/R group (2 hours of bilateral hind limb ischemia and 2.5 hours of reperfusion), and IPC group (three cycles of 5 minutes of ischemia/5 minutes of reperfusion immediately preceding I/R). Plasma was separated and stored at -70° C for later determination of plasma tumor necrosis factor-a and interleukin-6 with bioassay as markers of systemic inflammation. Circulating phagocytic cell priming was assessed with a whole blood chemiluminescence assay. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were markers of edema and neutrophil sequestration, respectively. The alveolar-arterial oxygen gradient and pulmonary artery pressure were indices of lung function. Results: In a porcine model, bilateral hind limb (I/R) injury significantly increased plasma interleukin-6 concentrations, circulating phagocytic cell priming, and pulmonary leukosequestration, edema, and impaired gas exchange. Conversely, pigs treated with IPC before the onset of the ischemic period had significantly reduced interleukin-6 levels, circulating phagocytic cell priming, and experienced significantly less pulmonary edema, leukosequestration, and respiratory failure. Conclusion: Lower limb IPC protects against systemic inflammation and acute lung injury in lower limb I/R injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI21) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia-reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI21 is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI21 at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at -70 degrees C for later determination of plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar-arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI21 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI21 ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2-year survival rate after conventional radiotherapy for carcinoma of the oesophagus is around 10–20% [8]. Concomitant chemoradiation schedules have produced survival figures of 25–30% at 5 years, and this is now considered standard treatment [1]. Conformal radiotherapy techniques offer the potential to deliver higher doses of radiation to oesophageal tumours [5], and this may improve local tumour control. However, concerns regarding late normal tissue damage to the lung parenchyma and spinal cord remain a concern. Intensitymodulated radiotherapy (IMRT) allows complex dose distributions to be produced, and can reduce the dose to radiosensitive organs close to the tumour [2]. The present study was designed to investigate the impact of beam intensity modulation on treatment planning for carcinoma of the oesophagus, by comparing a standard three-dimensional conformal radiotherapy (3DCRT) technique to an IMRT technique using the same number and orientation of treatment fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Radiotherapy is widely used to palliate local symptoms in non-small-cell lung cancer. Using conventional X-ray simulation, it is often difficult to accurately localize the extent of the tumour. We report a randomized, double blind trial comparing target localization with conventional and virtual simulation.Methods: Eighty-six patients underwent both conventional and virtual simulation. The conventional simulator films were compared with digitally reconstructed radiographs (DRRs) produced from the computed tomography (CT) data. The treatment fields defined by the clinicians using each modality were compared in terms of field area, position and the implications for target coverage.Results: Comparing fields defined by each study arm, there was a major mis-match in coverage between fields in 66.2% of cases, and a complete match in only 5.2% of cases. In 82.4% of cases, conventional simulator fields were larger (mean 24.5+/-5.1% (95% confidence interval)) than CT-localized fields, potentially contributing to a mean target under-coverage of 16.4+/-3.5% and normal tissue over-coverage of 25.4+/-4.2%.Conclusions: CT localization and virtual simulation allow more accurate definition of the target volume. This could enable a reduction in geographical misses, while also reducing treatment-related toxicity.