906 resultados para Lot-sizing and scheduling
Resumo:
The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.
Resumo:
The purpose of this study was to evaluate the effectiveness of an alternate day block schedule design (n = 419) versus a traditional six-period schedule design (n = 623) on the academic achievement of the graduating classes in two schools in which the design was used respectively. Academic achievement was measured by (a) two standardized tests: the Florida Comprehensive Assessment Test Sunshine State Standards (FCAT-SSS) in mathematics and reading for 9th and 10th grade and the Scholastic Reading Inventory Test (SRI) for 9 th, 10th, and 11th grade; (b) three school grades: the mathematics final course grades for 9th, 10th, and 11th grade, the English final course grades for 9th, 10th, 11th, and 12th grade and the graduating GPA. A total of five repeated measure analyses of variance (ANOVAs) were conducted to analyze the difference between the two schools (representing the two designs) with respect to five achievement indicators (FCAT-SSS mathematics scores, FCAT-SSS reading scores, SRI scores, mathematics final course grades, and English final course grades). The between-subject factor for the five ANOVAs was the schedule design and the within-subject factor was the time the tests were taken or the time the course grades were issued. T-tests were performed on all eighth grade achievement indicators to ensure there were no significant differences in achievement between the two cohorts prior to entering high school. An independent samples t-test was conducted to analyze the difference between the two schedule designs with respect to graduating GPA. Achievement in the alternate day block schedule design was significantly higher than in the traditional six-period schedule design for some of the locally assigned school grades. The difference between the two types of schedule designs was not significant for the standardized measures (the FCAT-SSS in reading and mathematics and the SRI). This study concludes that the use of an alternate day block schedule design can be considered an educational tool that can help improve the academic achievement of students as measured by local indicators of achievement; but, apparently the design is not an important factor in achievement as measured by state examinations such as the FCAT-SSS or the SRI.
Resumo:
Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^
Resumo:
Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^
Resumo:
Scheduling optimization is concerned with the optimal allocation of events to time slots. In this paper, we look at one particular example of scheduling problems - the 2015 Joint Statistical Meetings. We want to assign each session among similar topics to time slots to reduce scheduling conflicts. Chapter 1 briefly talks about the motivation for this example as well as the constraints and the optimality criterion. Chapter 2 proposes use of Latent Dirichlet Allocation (LDA) to identify the topic proportions in each session and talks about the fitting of the model. Chapter 3 translates these ideas into a mathematical formulation and introduces a Greedy Algorithm to minimize conflicts. Chapter 4 demonstrates the improvement of the scheduling with this method.
Resumo:
Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.
Resumo:
Cadastral map showing lot lines, property-owners' names, and planned streets.
Resumo:
Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.
Resumo:
With global markets and global competition, pressures are placed on manufacturing organizations to compress order fulfillment times, meet delivery commitments consistently and also maintain efficiency in operations to address cost issues. This chapter argues for a process perspective on planning, scheduling and control that integrates organizational planning structures, information systems as well as human decision makers. The chapter begins with a reconsideration of the gap between theory and practice, in particular for classical scheduling theory and hierarchical production planning and control. A number of the key studies of industrial practice are then described and their implications noted. A recent model of scheduling practice derived from a detailed study of real businesses is described. Socio-technical concepts are then introduced and their implications for the design and management of planning, scheduling and control systems are discussed. The implications of adopting a process perspective are noted along with insights from knowledge management. An overview is presented of a methodology for the (re-)design of planning, scheduling and control systems that integrates organizational, system and human perspectives. The most important messages from the chapter are then summarized.
Resumo:
The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator
Resumo:
The first goal of this study is to analyse a real-world multiproduct onshore pipeline system in order to verify its hydraulic configuration and operational feasibility by constructing a simulation model step by step from its elementary building blocks that permits to copy the operation of the real system as precisely as possible. The second goal is to develop this simulation model into a user-friendly tool that one could use to find an “optimal” or “best” product batch schedule for a one year time period. Such a batch schedule could change dynamically as perturbations occur during operation that influence the behaviour of the entire system. The result of the simulation, the ‘best’ batch schedule is the one that minimizes the operational costs in the system. The costs involved in the simulation are inventory costs, interface costs, pumping costs, and penalty costs assigned to any unforeseen situations. The key factor to determine the performance of the simulation model is the way time is represented. In our model an event based discrete time representation is selected as most appropriate for our purposes. This means that the time horizon is divided into intervals of unequal lengths based on events that change the state of the system. These events are the arrival/departure of the tanker ships, the openings and closures of loading/unloading valves of storage tanks at both terminals, and the arrivals/departures of trains/trucks at the Delivery Terminal. In the feasibility study we analyse the system’s operational performance with different Head Terminal storage capacity configurations. For these alternative configurations we evaluated the effect of different tanker ship delay magnitudes on the number of critical events and product interfaces generated, on the duration of pipeline stoppages, the satisfaction of the product demand and on the operative costs. Based on the results and the bottlenecks identified, we propose modifications in the original setup.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.