950 resultados para Long-axis Function
Resumo:
IL-33/ST2 axis is known to promote Th2 immune responses and has been linked to several autoimmune and inflammatory disorders, including inflammatory bowel disease (IBD), and recent evidences show that it can regulate eosinophils (EOS) infiltration and function. Based also on the well documented relationship between EOS and IBD, we assessed the role of IL-33-mediated eosinophilia and ileal inflammation in SAMP1/YitFc (SAMP) murine model of Th1/Th2 chronic enteritis, and we found that IL-33 is related to inflammation progression and EOS infiltration as well as IL-5 and eotaxins increase. Administering IL-33 to SAMP and AKR mice augmented eosinophilia, eotaxins mRNA expression and Th2 molecules production, whereas blockade of ST2 and/or typical EOS molecules, such as IL-5 and CCR3, resulted in a marked decrease of inflammation, EOS infiltration, IL-5 and eotaxins mRNA expression and Th2 cytokines production. Human data supported mice’s showing an increased colocalization of IL-33 and EOS in the colon mucosa of UC patients, as well as an augmented IL-5 and eotaxins mRNA expression, when compared to non-UC. Lastly we analyzed SAMP raised in germ free (GF) condition to see the microbiota effect on IL-33 expression and Th2 responses leading to chronic intestinal inflammation. We found a remarkable decrease in ileal IL-33 and Th2 cytokines mRNA expression as well as EOS infiltration in GF versus normal SAMP with comparable inflammatory scores. Moreover, EOS depletion in normal SAMP didn’t affect IL-33 mRNA expression. These data demonstrate a pathogenic role of IL-33-mediated eosinophilia in chronic intestinal inflammation, and that blockade of IL-33 and/or downstream EOS activation may represent a novel therapeutic modality to treat patients with IBD. Also they highlight the gut microbiota role in IL-33 production, and the following EOS infiltration in the intestinal mucosa, confirming that the microbiota is essential in mounting potent Th2 response leading to chronic ileitis in SAMP.
Resumo:
Hair cortisol is a novel marker to measure long-term secretion cortisol free from many methodological caveats associated with other matrices such as plasma, saliva, urine, milk and faeces. For decades hair analysis has been successfully used in forensic science and toxicology to evaluate the exposure to exogenous substances and assess endogenous steroid hormones. Evaluation of cortisol in hair matrix began about a decade ago and have over the past five years had a remarkable development by advancing knowledge and affirming this method as a new and efficient way to study the hypothalamic-pituitary-adrenal (HPA) axis activity over a long time period. In farm animals, certain environmental or management conditions can potentially activate the HPA axis. Given the importance of cortisol in monitoring the HPA axis activity, a first approach has involved the study on the distribution of hair cortisol concentrations (HCC) in healthy dairy cows showing a physiological range of variation of this hormone. Moreover, HCC have been significantly influenced also by changes in environmental conditions and a significant positive correlation was detected between HCC and cows clinically or physiologically compromised suggesting that these cows were subjected to repeated HPA axis activation. Additionally, Crossbreed F1 heifers showed significantly lower HCC compared to pure animals and a breed influence has been seen also on the HPA axis activity stimulated by an environmental change showing thus a higher level of resilience and a better adaptability to the environment of certain genotypes. Hair proved to be an excellent matrix also in the study of the activation of the HPA axis during the perinatal period. The use of hair analysis in research holds great promise to significantly enhance current understanding on the role of HPA axis over a long period of time.
Resumo:
The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. The potential use of hair glucocorticoids as a non-invasive, retrospective, biomarker of long term HPA activity is of great interest, and it is gaining acceptance in humans and animals. However, there are still no studies in literature examining hair cortisol concentration in pigs and corticosterone concentration in laboratory rodents. Therefore, we developed and validated, for the first time, a method for measuring hair glucocorticoids concentration in commercial sows and in Sprague-Dawley rats. Our preliminary data demonstrated: 1) a validated and specific washing protocol and extraction assay method with a good sensitivity in both species; 2) the effect of the reproductive phase, housing conditions and seasonality on hair cortisol concentration in sows; 3) similar hair corticosterone concentration in male and female rats; 4) elevated hair corticosterone concentration in response to chronic stress manipulations and chronic ACTH administration, demonstrating that hair provides a good direct index of HPA activity over long periods than other indirect parameters, such adrenal or thymus weight. From these results we believe that this new non-invasive tool needs to be applied to better characterize the overall impact in livestock animals and in laboratory rodents of chronic stressful situations that negatively affect animals welfare. Nevertheless, further studies are needed to improve this methodology and maybe to develop animal models for chronic stress of high interest and translational value in human medicine.
Resumo:
In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.
Resumo:
Over the past ten years, the cross-correlation of long-time series of ambient seismic noise (ASN) has been widely adopted to extract the surface-wave part of the Green’s Functions (GF). This stochastic procedure relies on the assumption that ASN wave-field is diffuse and stationary. At frequencies <1Hz, the ASN is mainly composed by surface-waves, whose origin is attributed to the sea-wave climate. Consequently, marked directional properties may be observed, which call for accurate investigation about location and temporal evolution of the ASN-sources before attempting any GF retrieval. Within this general context, this thesis is aimed at a thorough investigation about feasibility and robustness of the noise-based methods toward the imaging of complex geological structures at the local (∼10-50km) scale. The study focused on the analysis of an extended (11 months) seismological data set collected at the Larderello-Travale geothermal field (Italy), an area for which the underground geological structures are well-constrained thanks to decades of geothermal exploration. Focusing on the secondary microseism band (SM;f>0.1Hz), I first investigate the spectral features and the kinematic properties of the noise wavefield using beamforming analysis, highlighting a marked variability with time and frequency. For the 0.1-0.3Hz frequency band and during Spring- Summer-time, the SMs waves propagate with high apparent velocities and from well-defined directions, likely associated with ocean-storms in the south- ern hemisphere. Conversely, at frequencies >0.3Hz the distribution of back- azimuths is more scattered, thus indicating that this frequency-band is the most appropriate for the application of stochastic techniques. For this latter frequency interval, I tested two correlation-based methods, acting in the time (NCF) and frequency (modified-SPAC) domains, respectively yielding esti- mates of the group- and phase-velocity dispersions. Velocity data provided by the two methods are markedly discordant; comparison with independent geological and geophysical constraints suggests that NCF results are more robust and reliable.
Resumo:
Krebs stellt eine der häufigsten Todesursachen in Europa dar. Grundlage für eine langfristige Verbesserung des Behandlungserfolgs ist ein molekulares Verständnis der Mechanismen, welche zur Krankheitsentstehung beitragen. In diesem Zusammenhang spielen Proteasen nicht nur eine wichtige Rolle, sondern stellen auch bei vielerlei Erkrankungen bereits anerkannte Zielstrukturen derzeitiger Behandlungsstrategien dar. Die Protease Threonin Aspartase 1 (Taspase1) spielt eine entscheidende Rolle bei der Aktivierung von Mixed Lineage Leukemia (MLL)-Fusionsproteinen und somit bei der Entstehung aggressiver Leukämien. Aktuelle Arbeiten unterstreichen zudem die onkologische Relevanz von Taspase1 auch für solide Tumore. Die Kenntnisse über die molekularen Mechanismen und Signalnetzwerke, welche für die (patho)biologischen Funktionen von Taspase1 verantwortlich sind, stellen sich allerdings noch immer als bruchstückhaft dar. Um diese bestehenden Wissenslücken zu schließen, sollten im Rahmen der Arbeit neue Strategien zur Inhibition von Taspase1 erarbeitet und bewertet werden. Zusätzlich sollten neue Einsichten in evolutionären Funktionsmechanismen sowie eine weitergehende Feinregulation von Taspase1 erlangt werden. Zum einen erlaubte die Etablierung und Anwendung eines zellbasierten Taspase1-Testsystem, chemische Verbindungen auf deren inhibitorische Aktivität zu testen. Überraschenderweise belegten solch zelluläre Analysen in Kombination mit in silico-Modellierungen eindeutig, dass ein in der Literatur postulierter Inhibitor in lebenden Tumorzellen keine spezifische Wirksamkeit gegenüber Taspase1 zeigte. Als mögliche Alternative wurden darüber hinaus Ansätze zur genetischen Inhibition evaluiert. Obwohl publizierte Studien Taspase1 als ααββ-Heterodimer beschreiben, konnte durch Überexpression katalytisch inaktiver Mutanten kein trans-dominant negativer Effekt und damit auch keine Inhibition des wildtypischen Enzyms beobachtet werden. Weiterführende zellbiologische und biochemische Analysen belegten erstmalig, dass Taspase1 in lebenden Zellen in der Tat hauptsächlich als Monomer und nicht als Dimer vorliegt. Die Identifizierung evolutionär konservierter bzw. divergenter Funktionsmechanismen lieferte bereits in der Vergangenheit wichtige Hinweise zur Inhibition verschiedenster krebsrelevanter Proteine. Da in Drosophila melanogaster die Existenz und funktionelle Konservierung eines Taspase1-Homologs postuliert wurde, wurde in einem weiteren Teil der vorliegenden Arbeit die evolutionäre Entwicklung der Drosophila Taspase1 (dTaspase1) untersucht. Obwohl Taspase1 als eine evolutionär stark konservierte Protease gilt, konnten wichtige Unterschiede zwischen beiden Orthologen festgestellt werden. Neben einem konservierten autokatalytischen Aktivierungsmechanismus besitzt dTaspase1 verglichen mit dem humanen Enzym eine flexiblere Substraterkennungs-sequenz, was zu einer Vergrößerung des Drosophila-spezifischen Degradoms führt. Diese Ergebnisse zeigen des Weiteren, dass zur Definition und Vorhersage des Degradoms nicht nur proteomische sondern auch zellbiologische und bioinformatische Untersuchungen geeignet und notwendig sind. Interessanterweise ist die differentielle Regulation der dTaspase1-Aktivität zudem auf eine veränderte intrazelluläre Lokalisation zurückzuführen. Das Fehlen von in Vertebraten hochkonservierten aktiven Kernimport- und nukleolären Lokalisationssignalen erklärt, weshalb dTaspase1 weniger effizient nukleäre Substrate prozessiert. Somit scheint die für die humane Taspase1 beschriebene Regulation von Lokalisation und Aktivität über eine Importin-α/NPM1-Achse erst im Laufe der Entwicklung der Vertebraten entstanden zu sein. Es konnte also ein bislang unbekanntes evolutionäres Prinzip identifiziert werden, über welches eine Protease einen Transport- bzw. Lokalisations-basierten Mechanismus zur Feinregulation ihrer Aktivität „von der Fliege zum Menschen“ nutzt. Eine weitere Möglichkeit zur dynamischen Funktionsmodulation bieten post-translationale Modifikationen (PTMs) der Proteinsequenz, zu welcher Phosphorylierung und Acetylierung zählen. Interessanterweise konnte für die humane Taspase1 über den Einsatz unabhängiger Methoden einschließlich massenspektrometrischer Analysen eine Acetylierung durch verschiedene Histon-Acetyltransferasen (HATs) nachgewiesen werden. Diese Modifikation erfolgt reversibel, wobei vor allem die Histon-Deacetylase HDAC1 durch Interaktion mit Taspase1 die Deacetylierung der Protease katalysiert. Während Taspase1 in ihrer aktiven Konformation acetyliert vorliegt, kommt es nach Deacetylierung zu einer Reduktion ihrer enzymatischen Aktivität. Somit scheint die Modulation der Taspase1-Aktivität nicht allein über intra-proteolytische Autoaktivierung, Transport- und Interaktionsmechanismen, sondern zudem durch post-translationale Modifikationen gesteuert zu werden. Zusammenfassend konnten im Rahmen dieser Arbeit entscheidende neue Einblicke in die (patho)biologische Funktion und Feinregulation der Taspase1 gewonnen werden. Diese Ergebnisse stellen nicht nur einen wichtigen Schritt in Richtung eines verbesserten Verständnis der „Taspase1-Biologie“, sondern auch zur erfolgreichen Inhibition und Bewertung der krebsrelevanten Funktion dieser Protease dar.
Resumo:
INTRODUCTION: N-Acetylglutamate synthase (NAGS) deficiency is a rare urea cycle disorder, which may present in the neonatal period with severe hyperammonemia and marked neurological impairment. CASE REPORT: We report on a Turkish family with a patient who died due to hyperammonemia in the neonatal period. Reduced activity of NAGS and carbamyl phosphate synthetase were found at autopsy. A second child who developed hyperammonemia on the second day of life was immediately treated with arginine hydrochloride, sodium benzoate and protein restriction. After NAGS deficiency was suspected by enzyme analysis, sodium benzoate was replaced by N-carbamylglutamate (NCG). A third child who developed slight hyperammonemia on the third day of life was treated with NCG before enzyme analysis confirmed reduced NAGS activity. Neither of the patients developed hyperammonemia in the following years. After the human NAGS gene was identified, mutation analysis revealed that the older sibling on NCG therapy was homozygous for a 971G>A (W324X) mutation. The parents and the younger sibling were heterozygous. Therapy was continued in the older sibling until now without any adverse effects and favourable neurodevelopment outcome. In the younger sibling, therapy was stopped without any deterioration of urea cycle function. CONCLUSION: NAGS deficiency can be successfully treated with NCG and arginine hydrochloride with favourable outcome. Molecular diagnostic rather than enzyme analysis should be used in patients with suspected NAGS deficiency.
Resumo:
Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.
Resumo:
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Recent data have suggested a relation among long-term endurance sport practice, left atrial remodeling, and atrial fibrillation. We investigated the influence of an increased vagal tone, represented by the early repolarization (ER) pattern, on diastolic function and left atrial size in professional soccer players. Fifty-four consecutive athletes underwent electrocardiography, echocardiography, and exercise testing as part of their preparticipation screening. Athletes were divided into 2 groups according to presence or absence of an ER pattern, defined as a ST-segment elevation at the J-point (STE) > or =0.1 mm in 2 leads. For linear comparisons average STE was calculated. Mean age was 24 +/- 4 years. Twenty-five athletes (46%) showed an ER pattern. Athletes with an ER pattern had a significant lower heart rate (54 +/- 9 vs 62 +/- 11 beats/min, p = 0.024), an increased E/e' ratio (6.1 +/- 1.2 vs 5.1 +/- 1.0, p = 0.002), and larger volumes of the left atrium (25.6 +/- 7.3 vs 21.8 +/- 5.0 ml/m(2), p = 0.031) compared to athletes without an ER pattern. There were no significant differences concerning maximum workload, left ventricular dimensions, and systolic function. Univariate regression analysis revealed significant correlations among age, STE, and left atrial volume. In a stepwise multivariate regression analysis age, STE and e' contributed independently to left atrial size (r = 0.659, p <0.001). In conclusion, athletes with an ER pattern had an increased E/e' ratio, reflecting a higher left atrial filling pressure, contributing to left atrial remodeling over time.
Resumo:
Early and long-term use of cyclosporine A (CsA) leads to increased risks of renal toxicity. We hypothesized that administration of daclizumab in combination with mycophenolate mofetil (MMF) allows a relevant reduction in the dose of CsA.
Resumo:
Cell transplantation presents great potential for treatment of patients with severe heart failure. However, its clinical application was revealed to be more challenging than initially expected in experimental studies. Further investigations need to be undertaken to define the optimal treatment conditions. We previously reported on the epicardial implantation of a bio-engineered construct of skeletal myoblast-seeded polyurethane and its preventive effect on progression toward heart failure. In the present study, we present a long-term evaluation of this functional outcome. Left anterior descending coronary ligation was performed in female Lewis rats. Two weeks later, animals were treated with either epicardial implantation of biograft, acellular scaffold, sham operation, or direct intramyocardial skeletal myoblast injection. Functional assessments were performed with serial echocardiographies every 3 months and end point left ventricle pressure was assessed. Hearts were then harvested for histological examinations. Myocardial infarction induced a slow and progressive reduction in fractional shortening after 3 months. Progression toward heart failure was significantly prevented for up to 6 months after injection of myoblasts and for up to 9 months following biograft implantation. Nevertheless, this effect vanished after 12 months, with immunohistological examinations revealing an absence of the transplanted myoblasts within the scaffold. We demonstrated that tissue therapy is superior to cell therapy for stabilization of heart function. However, beneficial effects are transient.
Resumo:
Despite association with lung growth and long-term respiratory morbidity, there is a lack of normative lung function data for unsedated infants conforming to latest European Respiratory Society/American Thoracic Society standards. Lung function was measured using an ultrasonic flow meter in 342 unsedated, healthy, term-born infants at a mean ± sd age of 5.1 ± 0.8 weeks during natural sleep according to the latest standards. Tidal breathing flow-volume loops (TBFVL) and exhaled nitric oxide (eNO) measurements were obtained from 100 regular breaths. We aimed for three acceptable measurements for multiple-breath washout and 5-10 acceptable interruption resistance (R(int)) measurements. Acceptable measurements were obtained in ≤ 285 infants with high variability. Mean values were 7.48 mL·kg⁻¹ (95% limits of agreement 4.95-10.0 mL·kg⁻¹) for tidal volume, 14.3 ppb (2.6-26.1 ppb) for eNO, 23.9 mL·kg⁻¹ (16.0-31.8 mL·kg⁻¹) for functional residual capacity, 6.75 (5.63-7.87) for lung clearance index and 3.78 kPa·s·L⁻¹ (1.14-6.42 kPa·s·L⁻¹) for R(int). In males, TBFVL outcomes were associated with anthropometric parameters and in females, with maternal smoking during pregnancy, maternal asthma and Caesarean section. This large normative data set in unsedated infants offers reference values for future research and particularly for studies where sedation may put infants at risk. Furthermore, it highlights the impact of maternal and environmental risk factors on neonatal lung function.
Resumo:
Objectives: To evaluate the extent of bone fill over 3 years following the surgical treatment of peri-implantitis with bone grafting with or without a membrane. Material and Methods: In a non-submerged wound-healing mode, 15 subjects with 27 implants were treated with a bone substitute (Algipore®) alone and 17 subjects with 29 implants were treated with the bone substitute and a resorbable membrane (Osseoquest®). Implants with radiographic bone loss ≥1.8 mm following the first year in function and with bleeding and/or pus on probing were included. Following surgery, subjects were given systemic antibiotics (10 days) and rinsed with chlorhexidine. After initial healing, the subjects were enrolled in a strict maintenance programme. Results: Statistical analysis failed to demonstrate changes in bone fill between 1 and 3 years both between and within procedure groups. The mean defect fill at 3 years was 1.3 ± (SD) 1.3 mm if treated with the bone substitute alone and 1.6 ± (SD) 1.2 mm if treated with an adjunct resorbable membrane, (p=0.40). The plaque index decreased from approximately 40–10%, remaining stable during the following 2 years. Conclusion: Defect fill using a bone substitute with or without a membrane technique in the treatment of peri-implantitis can be maintained over 3 years.