759 resultados para Literacy in mathematics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans le contexte actuel de l’éducation au Québec où la réforme des programmes de formation des jeunes appelle un renouvellement des pratiques d’enseignement, notre recherche s’intéresse au développement de la dimension didactique de la pratique liée à l’enseignement des mathématiques qui est considéré comme l’un des éléments clés des nouvelles orientations. Nous abordons la question par le biais de la collaboration de formation initiale pour l’enseignement des mathématiques au primaire qui se vit en stage entre des praticiennes en exercice et en formation et une didacticienne des mathématiques. Cette rencontre sur le terrain des stages au primaire entre praticiennes et didacticienne, longtemps réclamée et rendue possible à l’UQAT , nous a amené à formuler une première question de recherche touchant ce qui se construit à travers les échanges de ces partenaires de la formation au cours des supervisions pédagogiques conjointes qui les réunissent en stage. Nous avons cadré ce questionnement à partir des balises théoriques de la didactique professionnelle qui proposent modèle et concepts pour expliciter l’activité professionnelle et traiter des phénomènes de développement des compétences professionnelles en contexte de travail et de formation. La didactique professionnelle attribue un rôle essentiel à la communauté de pratique et au processus d’analyse de l’expérience dans le développement professionnel des novices et dans l’explicitation d’un savoir d’action jugé pertinent et reconnu. Nous y faisons donc appel pour poser le potentiel que représentent les échanges issus de la collaboration quant à leur contribution à l’établissement d’un savoir de référence pour l’enseignement des mathématiques. La didactique professionnelle propose également le recours au concept de schème pour décrire l’activité professionnelle et à l’idée de concepts organisateurs comme élément central de l’activité et comme variable de la situation professionnelle concernée. Nous recourons à ces mêmes concepts pour expliciter le savoir de référence pour l’enseignement des mathématiques qui émerge à travers les échanges des partenaires de la formation. Dans le cadre d’une étude de cas, nous nous sommes intéressée aux échanges qui se déroulent entre une stagiaire qui effectue son troisième et avant dernier stage , l’enseignante-associée qui la reçoit et la chercheure-didacticienne qui emprunte le rôle de superviseure universitaire. Les échanges recueillis sont issus de trois cycles de supervision conjointe qui prennent la forme de rencontres de préparation des situations d’enseignement de mathématique; d’observation en classe des séances d’enseignement pilotées par la stagiaire auprès de ses élèves; et des rencontres consacrées à l’analyse des situations d’enseignement observées et de l’activité mise en œuvre par la stagiaire. Ainsi les objets de discussion relevés par les différents partenaires de la formation et la négociation de sens des situations professionnelles vécues et observées sont analysés de manière à rendre visibles les constituants de l’activité professionnelle qui sont jugés pertinents par la triade de formation. Dans un deuxième temps, en partant de cette première analyse, nous dégageons les concepts organisateurs des situations professionnelles liées à l’enseignement des mathématiques qui sont pris en compte par la triade de formation et qui constituent des variables de la situation professionnelle. Les constituants de l’activité et des situations professionnelles qui résultent de cette analyse sont envisagés en tant que représentations collectives qui se révèlent à travers les échanges de la triade de formation. Parce que ces représentations se sont trouvées partagées, négociées dans le cadre des supervisions pédagogiques, elles sont envisagées également en tant que savoir de référence pour cette triade de formation. Les échanges rendus possibles entre les praticiennes et la didacticienne placent ce savoir de référence dans une dynamique de double rationalité pratique et didactique. Enfin, partant de l’apport déterminant de la communauté de pratique et de formation de même que du savoir de référence que cette dernière reconnait comme pertinent dans le développement professionnel des novices, les résultats de cette recherches peuvent contribuer à réfléchir la formation des futures enseignantes en stage en ce qui a trait à l’enseignement des mathématiques au primaire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La présente étude intitulée « utilisation des technologies de l’information et de la communication dans l’enseignement secondaire et développement des compétences des élèves en résolution de problèmes mathématiques au Burkina Faso » est une recherche descriptive de type mixte examinant à la fois des données qualitatives et quantitatives. Elle examine les compétences en résolution de problèmes mathématiques d’élèves du Burkina Faso pour révéler d’éventuelles relations entre celles-ci et l’utilisation des TIC par les élèves ou leur enseignant de mathématiques. L’intérêt de cette recherche est de fournir des informations aussi bien sur la réalité des TIC dans l’enseignement secondaire au Burkina que sur les effets de leur présence dans l’enseignement et l’apprentissage des mathématiques. Les éléments théoriques ayant servi à l’analyse des données sont présentés suivant trois directions : la résolution des problèmes, le développement des compétences, et les relations entre les TIC, le développement de compétences et la résolution de problèmes. Du croisement de ces éléments émergent trois axes pour le développement de la réponse apportée à la préoccupation de l’étude : 1) décrire l’utilisation de l’ordinateur par les élèves du Burkina Faso pour améliorer leur apprentissage des mathématiques ; 2) identifier des rapports éventuels entre l’utilisation de l’ordinateur par les élèves et leurs compétences en résolution de problèmes mathématiques ; 3) identifier des rapports entre les compétences TIC de l’enseignant de mathématiques et les compétences de ses élèves en résolution de problèmes. Les processus de la résolution de problèmes sont présentés selon l’approche gestaltiste qui les fait passer par une illumination et selon l’approche de la théorie de la communication qui les lie au type de problème. La résolution de problèmes mathématiques passe par des étapes caractéristiques qui déterminent la compétence du sujet. Le concept de compétence est présenté selon l’approche de Le Boterf. Les données révèlent que les élèves du Burkina Faso utilisent l’ordinateur selon une logique transmissive en le considérant comme un répétiteur suppléant de l’enseignant. Par la suite, il n’y a pas de différence significative dans les compétences en résolution de problèmes mathématiques entre les élèves utilisant l’ordinateur et ceux qui ne l’utilisent pas. De même, l’étude révèle que les enseignants présentant des compétences TIC n’ont pas des élèves plus compétents en résolution de problèmes mathématiques que ceux de leurs collègues qui n’ont pas de compétences TIC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De nombreuses études sur l’évolution de la motivation pour les mathématiques sont disponibles et il existe également plusieurs recherches qui se sont penchées sur la question de la différence motivationnelle entre les filles et les garçons. Cependant, aucune étude n’a tenu compte de la séquence scolaire des élèves en mathématiques pour comprendre le changement motivationnel vécu pendant le second cycle du secondaire, alors que le classement en différentes séquences est subi par tous au secondaire au Québec. Le but principal de cette étude est de documenter l’évolution de la motivation pour les mathématiques des élèves du second cycle du secondaire en considérant leur séquence de formation scolaire et leur sexe. Les élèves ont été classés dans deux séquences, soit celle des mathématiques de niveau de base (416-514) et une autre de niveau de mathématiques avancé (436-536). Trois mille quatre cent quarante élèves (1864 filles et 1576 garçons) provenant de 30 écoles secondaires publiques francophones de la grande région de Montréal ont répondu à cinq reprises à un questionnaire à items auto-révélés portant sur les variables motivationnelles suivantes : le sentiment de compétence, l’anxiété de performance, la perception de l’utilité des mathématiques, l’intérêt pour les mathématiques et les buts d’accomplissement. Ces élèves étaient inscrits en 3e année du secondaire à la première année de l’étude. Ils ont ensuite été suivis en 4e et 5e année du secondaire. Les résultats des analyses à niveaux multiples indiquent que la motivation scolaire des élèves est généralement en baisse au second cycle du secondaire. Cependant, cette diminution est particulièrement criante pour les élèves inscrits dans les séquences de mathématiques avancées. En somme, les résultats indiquent que les élèves inscrits dans les séquences avancées montrent des diminutions importantes de leur sentiment de compétence au second cycle du secondaire. Leur anxiété de performance est en hausse à la fin du secondaire et l’intérêt et la perception de l’utilité des mathématiques chutent pour l’ensemble des élèves. Les buts de maîtrise-approche sont également en baisse pour tous et les élèves des séquences de base maintiennent généralement des niveaux plus faibles. Une diminution des buts de performance-approche est aussi retrouvée, mais cette dernière n’atteint que les élèves dans les séquences de formation avancées. Des hausses importantes des buts d’évitement du travail sont retrouvées pour les élèves des séquences de mathématiques avancées à la fin du secondaire. Ainsi, les élèves des séquences de mathématiques avancées enregistrent la plus forte baisse motivationnelle pendant le second cycle du secondaire bien qu’ils obtiennent généralement des scores supérieurs aux élèves des séquences de base. Ces derniers maintiennent généralement leur niveau motivationnel. La différence motivationnelle entre les filles et les garçons ne sont pas souvent significatives, malgré le fait que les filles maintiennent généralement un niveau motivationnel inférieur à celui des garçons, et ce, par rapport à leur séquence de formation respective. En somme, les résultats de la présente étude indiquent que la diminution de la motivation au second cycle du secondaire pour les mathématiques touche principalement les élèves des séquences avancées. Il paraît ainsi pertinent de considérer la séquence scolaire dans les études sur l’évolution de la motivation, du moins en mathématiques. Il semble particulièrement important d’ajuster les interventions pédagogiques proposées aux élèves des séquences avancées afin de faciliter leur transition en mathématiques de quatrième secondaire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette recherche a eu pour objectif d’explorer les postures d’animateurs et d’animatrices scientifiques quant au dialogue « sciences en/et société » et les moyens qu’ils utilisent pour assurer ce dialogue à travers leurs interventions pédagogiques dans le cadre d’ateliers scientifiques hors scolaires. Six animateurs scientifiques ont été interviewés. Ces entretiens ont permis de recueillir des données riches sur leur compréhension de la nature des sciences, leurs postures pédagogiques en tant que transmetteur, guide ou médiateur du développement de l’alphabétisation scientifique chez les jeunes dans les espaces hors scolaires, ainsi que sur la manière dont ils perçoivent le rôle de leurs interventions pédagogiques dans le cadre du développement de l’alphabétisation scientifique chez les jeunes et de la compréhension qu’ils ont des sciences comme outil d’action sociopolitique, tel qu’entendu dans le dialogue « sciences en/et société ». Les postures épistémologiques, pédagogiques et sociales identifiées sont d’une grande diversité et révèlent des tendances qui s’inscrivent dans des spectres allant de l’empirisme au constructivisme, du divertissement à l’empowerment et de la valorisation de la place des sciences en société à la critique de sa primauté. Plusieurs animateurs scientifiques de notre échantillon ont ainsi eu des postures hybrides et parfois conflictuelles, ce qui met en évidence la valeur potentielle d’interventions éducatives qui donnent aux animateurs scientifiques l’occasion de questionner et de réexaminer de manière critique leurs pratiques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le phénomène du décrochage scolaire est encore très présent dans notre société, particulièrement chez les garçons. Notre mémoire s’intéresse à la question et vise à mieux comprendre la dynamique motivationnelle d’un échantillon (N=11) d’élèves masculins considéré comme étant « à risque » de décrochage au 3e cycle d’une école primaire de Montréal. De plus, notre expérimentation vise spécifiquement à décrire l’influence de l’utilisation d’une activité pédagogique dite « motivante » : le jeu éducatif numérique « Math en Jeu » sur la dynamique motivationnelle à apprendre en mathématiques. Il s’agit d’une étude de cas avec une approche mixte de collecte de données. Nos résultats révèlent quatre profils de dynamique motivationnelle chez les élèves de notre échantillon : 1) les élèves en difficulté en mathématiques, 2) les élèves démotivés et 3) les élèves démotivés et en difficulté en mathématiques, puis, 4) des cas plus complexes. Notre analyse montre que « Math en Jeu » suscite un grand intérêt chez tous les élèves de notre échantillon. L’influence du jeu sur la dynamique motivationnelle semble toutefois mieux convenir aux élèves avec des dynamiques motivationnelles de type « démotivé » ou « démotivé et en difficulté en mathématiques » et dans une certaine mesure, certains élèves catégorisés comme étant des « cas complexes ». Nos résultats indiquent que le jeu pourrait notamment avoir une certaine influence sur le sentiment de compétence à réussir de l’élève. Toutefois, pour être en mesure de mieux décrire et analyser ces influences, il serait préférable de mener des recherches sur une plus longue durée, dans un contexte naturel de classe et sur un échantillon d’élèves plus grand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’introduction aux concepts unificateurs dans l’enseignement des mathématiques privilégie typiquement l’approche axiomatique. Il n’est pas surprenant de constater qu’une telle approche tend à une algorithmisation des tâches pour augmenter l’efficacité de leur résolution et favoriser la transparence du nouveau concept enseigné (Chevallard, 1991). Cette réponse classique fait néanmoins oublier le rôle unificateur du concept et n’encourage pas à l’utilisation de sa puissance. Afin d’améliorer l’apprentissage d’un concept unificateur, ce travail de thèse étudie la pertinence d’une séquence didactique dans la formation d’ingénieurs centrée sur un concept unificateur de l’algèbre linéaire: la transformation linéaire (TL). La notion d’unification et la question du sens de la linéarité sont abordées à travers l’acquisition de compétences en résolution de problèmes. La séquence des problèmes à résoudre a pour objet le processus de construction d’un concept abstrait (la TL) sur un domaine déjà mathématisé, avec l’intention de dégager l’aspect unificateur de la notion formelle (Astolfi y Drouin, 1992). À partir de résultats de travaux en didactique des sciences et des mathématiques (Dupin 1995; Sfard 1991), nous élaborons des situations didactiques sur la base d’éléments de modélisation, en cherchant à articuler deux façons de concevoir l’objet (« procédurale » et « structurale ») de façon à trouver une stratégie de résolution plus sûre, plus économique et réutilisable. En particulier, nous avons cherché à situer la notion dans différents domaines mathématiques où elle est applicable : arithmétique, géométrique, algébrique et analytique. La séquence vise à développer des liens entre différents cadres mathématiques, et entre différentes représentations de la TL dans les différents registres mathématiques, en s’inspirant notamment dans cette démarche du développement historique de la notion. De plus, la séquence didactique vise à maintenir un équilibre entre le côté applicable des tâches à la pratique professionnelle visée, et le côté théorique propice à la structuration des concepts. L’étude a été conduite avec des étudiants chiliens en formation au génie, dans le premier cours d’algèbre linéaire. Nous avons mené une analyse a priori détaillée afin de renforcer la robustesse de la séquence et de préparer à l’analyse des données. Par l’analyse des réponses au questionnaire d’entrée, des productions des équipes et des commentaires reçus en entrevus, nous avons pu identifier les compétences mathématiques et les niveaux d’explicitation (Caron, 2004) mis à contribution dans l’utilisation de la TL. Les résultats obtenus montrent l’émergence du rôle unificateur de la TL, même chez ceux dont les habitudes en résolution de problèmes mathématiques sont marquées par une orientation procédurale, tant dans l’apprentissage que dans l’enseignement. La séquence didactique a montré son efficacité pour la construction progressive chez les étudiants de la notion de transformation linéaire (TL), avec le sens et les propriétés qui lui sont propres : la TL apparaît ainsi comme un moyen économique de résoudre des problèmes extérieurs à l’algèbre linéaire, ce qui permet aux étudiants d’en abstraire les propriétés sous-jacentes. Par ailleurs, nous avons pu observer que certains concepts enseignés auparavant peuvent agir comme obstacles à l’unification visée. Cela peut ramener les étudiants à leur point de départ, et le rôle de la TL se résume dans ces conditions à révéler des connaissances partielles, plutôt qu’à guider la résolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La thèse porte sur l’analyse qualitative de situations didactiques intégrées au programme de prévention au préscolaire Fluppy. Conçu pour la prévention de la violence et du décrochage scolaire (Tremblay et al., 1992, Tremblay et al., 1995), ce programme s’est enrichi depuis une dizaine d’années de différentes composantes d’intervention, dont une sur l’enseignement du français et des mathématiques. Ce programme, relevant aujourd’hui d’une approche multimodale, a fait l’objet d’une évaluation d’impact en 2002-2004 (Capuano et al., 2010). Le devis quasi-expérimental n’a cependant pas permis de procéder à une analyse appropriée au cadre méthodologique, l’ingénierie didactique (Artigue, 1990), sur lequel se fondent les situations didactiques en mathématiques. La thèse procède donc à la validation interne des trois séquences numériques, issues de la composante mathématique, telles qu’expérimentées dans deux classes du préscolaire en 2011-2012. La première séquence vise au développement des connaissances sur la désignation de quantités. La deuxième sur la comparaison numérique et, la troisième, sur la composition additive des nombres. Les analyses mettent en évidence : 1) certains décalages entre la proposition didactique et la réalisation effective des situations; 2) l’évolution des connaissances numériques des élèves; 3) les forces et les limites de l’analyse a priori. L’interprétation des résultats ouvre sur un enrichissement de l’analyse a priori des situations didactiques ainsi que sur de nouvelles considérations relatives aux processus de dévolution et d’institutionnalisation dans le cadre de l’appropriation de situations didactiques par des enseignants du préscolaire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La mémoire à court terme visuelle (MCTv) est un système qui permet le maintien temporaire de l’information visuelle en mémoire. La capacité en mémoire à court terme se définit par le nombre d’items qu’un individu peut maintenir en mémoire sur une courte période de temps et est limitée à environ quatre items. Il a été démontré que la capacité en MCTv et les habiletés mathématiques sont étroitement liées. La MCTv est utile dans beaucoup de composantes liées aux mathématiques, comme la résolution de problèmes, la visualisation mentale et l’arithmétique. En outre, la MCTv et le raisonnement mathématique font appel à des régions similaires du cerveau, notamment dans le cortex pariétal. Le sillon intrapariétal (SIP) semble être particulièrement important, autant dans la réalisation de tâches liées à la MCTv qu’aux habiletés mathématiques. Nous avons créé une tâche de MCTv que 15 participants adultes en santé ont réalisée pendant que nous enregistrions leur activité cérébrale à l’aide de la magnétoencéphalographie (MEG). Nous nous sommes intéressés principalement à la composante SPCM. Une évaluation neuropsychologique a également été administrée aux participants. Nous souhaitions tester l’hypothèse selon laquelle l’activité cérébrale aux capteurs pariéto-occipitaux pendant la tâche de MCTv en MEG sera liée à la performance en mathématiques. Les résultats indiquent que l’amplitude de l’activité pariéto-occipitale pendant la tâche de MCTv permet de prédire les habiletés mathématiques ainsi que la performance dans une tâche de raisonnement perceptif. Ces résultats permettent de confirmer le lien existant entre les habiletés mathématiques et le fonctionnement sous-jacent à la MCTv.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce mémoire cherche à créer un dialogue entre les domaines de recherche du livre d’images et celui de recherches sur la paix afin d’exposer les différentes formes et fonctions des livres d’images pour la paix. Questionnant le pourquoi et le comment de ces œuvres, ce travail expose la façon et la manière avec lesquelles ces dernières contribuent à « l’alphabétisation de la paix » auprès des enfants et comment elles les motivent à agir en fonction de la paix. Les livres d’images constituent un média idéal pour éduquer les enfants à la paix. Très tôt dans le processus de socialisation, ces livres sauront transmettre et inculquer des concepts et aptitudes clefs et éventuellement ancrer dans l’esprit de l’enfant les valeurs d’une culture de la paix. Au centre de cette recherche est exposé le thème de la paix tel que traité à travers les œuvres de l’écrivaine autrichienne Mira Lobe (1913–1995). Par l’analyse de sept livres d’images pour la paix, ce travail explique quelles stratégies et méthodes littéraires, pédagogiques, sémiotiques, narratives et esthétiques sont employées par l’auteure pour réussir à bien présenter et à traiter de sujets politiques complexes et d’enjeux sociaux et humains parfois délicats et tabous à un jeune auditoire. Il montre également par quels moyens ces œuvres font naître l’empathie, une aversion pour la violence et comment elles pourront finalement amener les enfants à opter pour l’acte de la paix. En joignant et en mettant en relation les résultats et conclusions des deux champs de recherche observés dans ce travail, soit l’éducation à la paix et la recherche sur des livres d’images, il devient possible de démontrer comment Mira Lobe apporte, avec ses livres d’images pour la paix, une contribution universelle et intemporelle à l’éducation à la paix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Une étude récente auprès de 302 mathématiciens canadiens révèle un écart intriguant : tandis que 43% des sondés utilisent la programmation informatique dans leur recherche, seulement 18% indiquent qu'ils emploient cette technologie dans leur enseignement (Buteau et coll., 2014). La première donnée reflète le potentiel énorme qu'a la programmation pour faire et apprendre des mathématiques. La deuxième donnée a inspiré ce mémoire : pourquoi existe-t-il un tel écart ? Pour répondre à cette question, nous avons mené une étude exploratoire qui cherche à mieux comprendre la place de la programmation dans la recherche et la formation en mathématiques au niveau universitaire. Des entrevues semi-dirigées ont été conduites avec 14 mathématiciens travaillant dans des domaines variés et à différentes universités à travers le pays. Notre analyse qualitative nous permet de décrire les façons dont ces mathématiciens construisent des programmes informatiques afin d'accomplir plusieurs tâches (p.e., simuler des phénomènes réels, faire des mathématiques « expérimentales », développer de nouveaux outils puissants). Elle nous permet également d'identifier des moments où les mathématiciens exposent leurs étudiants à certains éléments de ces pratiques en recherche. Nous notons toutefois que les étudiants sont rarement invités à concevoir et à écrire leurs propres programmes. Enfin, nos participants évoquent plusieurs contraintes institutionnelles : le curriculum, la culture départementale, les ressources humaines, les traditions en mathématiques, etc. Quelques-unes de ces contraintes, qui semblent limiter l'expérience mathématique des étudiants de premier cycle, pourraient être revues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory (including the Diagonal Argument, the Continuum Hypothesis and Cantor’s Theorem) and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing (completed) infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning (applied) problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.