1000 resultados para Liquid Packaging Board
Resumo:
AIMS: Retroviral-mediated gene therapy has been proposed as a primary or adjuvant treatment for advanced cancer, because retroviruses selectively infect dividing cells. Efficacy of retroviral-mediated gene transfer, however, is limited in vivo. Although packaging cell lines can produce viral vectors continuously, such allo- or xenogeneic cells are normally rejected when used in vivo. Encapsulation using microporous membranes can protect the packaging cells from rejection. In this study, we used an encapsulated murine packaging cell line to test the effects of in situ delivery of a retrovirus bearing the herpes simplex virus thymidine kinase suicide gene in a rat model of orthotopic glioblastoma. MATERIALS AND METHODS: To test gene transfer in vitro, encapsulated murine psi2-VIK packaging cells were co-cultured with baby hamster kidney (BHK) cells, and the percentage of transfected BHK cells was determined. For in vivo experiments, orthotopic C6 glioblastomas were established in Wistar rats. Capsules containing psi2-VIK cells were stereotaxically implanted into these tumours and the animals were treated with ganciclovir (GCV). Tumours were harvested 14 days after initiation of GCV therapy for morphometric analysis. RESULTS: Encapsulation of psi2-VIK cells increased transfection rates of BHK target cells significantly in vitro compared to psi2-VIK conditioned medium (3 x 10(6) vs 2.3 x 10(4) cells; P<0.001). In vivo treatment with encapsulated packaging cells resulted in 3% to 5% of C6 tumour cells transduced and 45% of tumour volume replaced by necrosis after GCV (P<0.01 compared to controls). CONCLUSION: In this experimental model of glioblastoma, encapsulation of a xenogeneic packaging cell line increased half-life and transduction efficacy of retrovirus-mediated gene transfer and caused significant tumour necrosis.
Resumo:
Audit report of the Iowa Ethics and Campaign Disclosure Board for the year ended June 30, 2010
Resumo:
Report of recommendations to the Public Employment Relations Board for the year ending, June 30, 2010
Resumo:
Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4·5(H2O). The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.
Resumo:
Report on the Board of Regents for the year ended June 30, 2010
Resumo:
Audit report on the Iowa Petroleum Underground Storage Tank Board (UST Board) for the year ended June 30, 2010
Resumo:
We have investigated the nucleation rate at which cavities are formed in 4He and 3He at negative pressures due to thermal fluctuations. To this end, we have used a density functional that reproduces the He liquid-gas interface along the coexistence line. The inclusion of thermal effects in the calculation of the barrier against nucleation results in a sizable decrease of the absolute value of the tensile strength above 1.5 K.
Resumo:
Using a functional-integral approach, we have determined the temperature below which cavitation in liquid helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the crossover temperature in the whole range of allowed negative pressures. Our results are compatible with recent experimental results on 4He.