948 resultados para Linear regression analysis
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.
Resumo:
Background:In chronic Chagas disease (ChD), impairment of cardiac autonomic function bears prognostic implications. Phase‑rectification of RR-interval series isolates the sympathetic, acceleration phase (AC) and parasympathetic, deceleration phase (DC) influences on cardiac autonomic modulation.Objective:This study investigated heart rate variability (HRV) as a function of RR-interval to assess autonomic function in healthy and ChD subjects.Methods:Control (n = 20) and ChD (n = 20) groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600–1100 ms. In each class, mean RR-intervals (MNN) and root-mean-squared difference (RMSNN) of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT), and in AC (RMSNNAC) and DC (RMSNNDC) phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05).Results:Correlation coefficient was significant in all regressions (p < 0.05). In the control group, RMSNNT, RMSNNAC, and RMSNNDCsignificantly increased linearly with MNN (p < 0.05). In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not.Conclusion:HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence.
Resumo:
Background: Many studies have found considerable variations in the resource intensity of physical therapy episodes. Although they have identified several patient-and provider-related factors, few studies have examined their relative explanatory power. We sought to quantify the contribution of patients and providers to these differences and examine how effective Swiss regulations are (nine-session ceiling per prescription and bonus for first treatments). Methods: Our sample consisted of 87,866 first physical therapy episodes performed by 3,365 physiotherapists based on referrals by 6,131 physicians. We modeled the number of visits per episode using a multilevel log linear regression with crossed random effects for physiotherapists and physicians and with fixed effects for cantons. The three-level explanatory variables were patient, physiotherapist and physician characteristics. Results: The median number of sessions was nine (interquartile range 6-13). Physical therapy use increased with age, women, higher health care costs, lower deductibles, surgery and specific conditions. Use rose with the share of nine-session episodes among physiotherapists or physicians, but fell with the share of new treatments. Geographical area had no influence. Most of the variance was explained at the patient level, but the available factors explained only 4% thereof. Physiotherapists and physicians explained only 6% and 5% respectively of the variance, although the available factors explained most of this variance. Regulations were the most powerful factors. Conclusion: Against the backdrop of abundant physical therapy supply, Swiss financial regulations did not restrict utilization. Given that patient-related factors explained most of the variance, this group should be subject to closer scrutiny. Moreover, further research is needed on the determinants of patient demand.
Resumo:
Robust Huber type regression and testing of linear hypotheses are adapted to statistical analysis of parallel line and slope ratio assays. They are applied in the evaluation of results of several experiments carried out in order to compare and validate alternatives to animal experimentation based on embryo and cell cultures. Computational procedures necessary for the application of robust methods of analysis used the conversational statistical package ROBSYS. Special commands for the analysis of parallel line and slope ratio assays have been added to ROBSYS.
Resumo:
BACKGROUND Persons with schizophrenia and related disorders may be particularly sensitive to a number of determinants of service use, including those related with illness, socio-demographic characteristics and organizational factors. The objective of this study is to identify factors associated with outpatient contacts at community mental health services of patients with schizophrenia or related disorders. METHODS This cross-sectional study analyzed 1097 patients. The main outcome measure was the total number of outpatient consultations during one year. Independent variables were related to socio-demographic, clinical and use of service factors. Data were collected from clinical records. RESULTS The multilevel linear regression model explained 46.35% of the variance. Patients with significantly more contacts with ambulatory services were not working and were receiving welfare benefits (p = 0.02), had no formal education (p = 0.02), had a global level of severity of two or three (four being the most severe) (p < 0.001), with one or more inpatient admissions (p < 0.001), and in contact with both types of professional (nurses and psychiatrists) (p < 0.001). The patients with the fewest ambulatory contacts were those with diagnoses of persistent delusional disorders (p = 0.04) and those who were attended by four of the 13 psychiatrists (p < 0.001). CONCLUSIONS As expected, the variables that explained the use of community service could be viewed as proxies for severity of illness. The most surprising finding, however, was that a group of four psychiatrists was also independently associated with use of ambulatory services by patients with schizophrenia or related disorders. More research is needed to carefully examine how professional support networks interact to affect use of mental health.
Resumo:
BACKGROUND/OBJECTIVES: (1) To cross-validate tetra- (4-BIA) and octopolar (8-BIA) bioelectrical impedance analysis vs dual-energy X-ray absorptiometry (DXA) for the assessment of total and appendicular body composition and (2) to evaluate the accuracy of external 4-BIA algorithms for the prediction of total body composition, in a representative sample of Swiss children. SUBJECTS/METHODS: A representative sample of 333 Swiss children aged 6-13 years from the Kinder-Sportstudie (KISS) (ISRCTN15360785). Whole-body fat-free mass (FFM) and appendicular lean tissue mass were measured with DXA. Body resistance (R) was measured at 50 kHz with 4-BIA and segmental body resistance at 5, 50, 250 and 500 kHz with 8-BIA. The resistance index (RI) was calculated as height(2)/R. Selection of predictors (gender, age, weight, RI4 and RI8) for BIA algorithms was performed using bootstrapped stepwise linear regression on 1000 samples. We calculated 95% confidence intervals (CI) of regression coefficients and measures of model fit using bootstrap analysis. Limits of agreement were used as measures of interchangeability of BIA with DXA. RESULTS: 8-BIA was more accurate than 4-BIA for the assessment of FFM (root mean square error (RMSE)=0.90 (95% CI 0.82-0.98) vs 1.12 kg (1.01-1.24); limits of agreement 1.80 to -1.80 kg vs 2.24 to -2.24 kg). 8-BIA also gave accurate estimates of appendicular body composition, with RMSE < or = 0.10 kg for arms and < or = 0.24 kg for legs. All external 4-BIA algorithms performed poorly with substantial negative proportional bias (r> or = 0.48, P<0.001). CONCLUSIONS: In a representative sample of young Swiss children (1) 8-BIA was superior to 4-BIA for the prediction of FFM, (2) external 4-BIA algorithms gave biased predictions of FFM and (3) 8-BIA was an accurate predictor of segmental body composition.
Resumo:
BACKGROUND It is not clear to what extent educational programs aimed at promoting diabetes self-management in ethnic minority groups are effective. The aim of this work was to systematically review the effectiveness of educational programs to promote the self-management of racial/ethnic minority groups with type 2 diabetes, and to identify programs' characteristics associated with greater success. METHODS We undertook a systematic literature review. Specific searches were designed and implemented for Medline, EMBASE, CINAHL, ISI Web of Knowledge, Scirus, Current Contents and nine additional sources (from inception to October 2012). We included experimental and quasi-experimental studies assessing the impact of educational programs targeted to racial/ethnic minority groups with type 2 diabetes. We only included interventions conducted in countries members of the OECD. Two reviewers independently screened citations. Structured forms were used to extract information on intervention characteristics, effectiveness, and cost-effectiveness. When possible, we conducted random-effects meta-analyses using standardized mean differences to obtain aggregate estimates of effect size with 95% confidence intervals. Two reviewers independently extracted all the information and critically appraised the studies. RESULTS We identified thirty-seven studies reporting on thirty-nine educational programs. Most of them were conducted in the US, with African American or Latino participants. Most programs obtained some benefits over standard care in improving diabetes knowledge, self-management behaviors and clinical outcomes. A meta-analysis of 20 randomized controlled trials (3,094 patients) indicated that the programs produced a reduction in glycated hemoglobin of -0.31% (95% CI -0.48% to -0.14%). Diabetes knowledge and self-management measures were too heterogeneous to pool. Meta-regressions showed larger reduction in glycated hemoglobin in individual and face to face delivered interventions, as well as in those involving peer educators, including cognitive reframing techniques, and a lower number of teaching methods. The long-term effects remain unknown and cost-effectiveness was rarely estimated. CONCLUSIONS Diabetes self-management educational programs targeted to racial/ethnic minority groups can produce a positive effect on diabetes knowledge and on self-management behavior, ultimately improving glycemic control. Future programs should take into account the key characteristics identified in this review.
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.
Resumo:
La regressió basada en distàncies és un mètode de predicció que consisteix en dos passos: a partir de les distàncies entre observacions obtenim les variables latents, les quals passen a ser els regressors en un model lineal de mínims quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals fent us d'una funció de dissimilaritats adequada. Donat que, en general, els regressors estan relacionats de manera no lineal amb la resposta, la seva selecció amb el test F usual no és possible. En aquest treball proposem una solució a aquest problema de selecció de predictors definint tests estadístics generalitzats i adaptant un mètode de bootstrap no paramètric per a l'estimació dels p-valors. Incluim un exemple numèric amb dades de l'assegurança d'automòbils.
Resumo:
Background: Numerous studies have shown a negative association between birth weight (BW) and blood pressure (BP) later in life. To estimate the direct effect of BW on BP, it is conventional to condition on current weight (CW). However, such conditioning can induce collider stratification bias in the estimate of the direct effect. Objective: To bound the potential bias due to U, an unmeasured common cause of CW and BP, on the estimate of the (controlled) direct effect of BW on BP. Methods: Data from a school based study in Switzerland were used (N = 4,005; 2,010 B/1,995 G; mean age: 12.3 yr [range: 10.1-14.9]). Measured common causes of BW-BP (SES, smoking, body weight, and hypertension status of the mother) and CW-BP (breastfeeding and child's physical activity and diet) were identified with DAGs. Linear regression models were fitted to estimate the association between BW and BP. Sensitivity analyses were conducted to assess the potential effect of U on the association between BW and BP. U was assumed 1) to be a binary variable that affected BP by the same magnitude in low BWand in normal BW children and 2) to have a different prevalence in low BW children and in normal BW children for a given CW. Results: A small negative association was observed between BW and BP [beta: -0.3 mmHg/kg (95% CI: -0.9 to 0.3)]. The association was strengthened upon conditioning for CW [beta: -1.5 mmHg/kg (95% CI: -2.1 to -0.9)]. Upon further conditioning on common causes of BW-BP and CW-BP, the association did not change substantially [beta: -1.4 mmHg/kg (95% CI: -2.0 to -0.8)]. The negative association could be explained by U only if U was strongly associated with BP and if there was a large difference in the prevalence of U between low BWand normal BW children. Conclusion: The observed negative association between BW and BP upon adjustment for CW was not easily explained by an unmeasured common cause of CWand BP.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.