993 resultados para Linear Capillary Instability
Resumo:
Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.
Resumo:
We propose in experimental method to study the instability of thin unsteady separation bubbles, i.e. of unsteady boundary layers with reverse flow. The unsteady boundary layer is created by controlled temporal and spatial variations of the velocity external to the boundary layer. We present results of the evolution of instability in different temporally varying flows in a shallow angle diffuser. Depending on the extent of reverse flow in the boundary we observe that instability can be spatially localised.
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.
Resumo:
Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.
Resumo:
This paper examines how volatility in financial markets can preferable be modeled. The examination investigates how good the models for the volatility, both linear and nonlinear, are in absorbing skewness and kurtosis. The examination is done on the Nordic stock markets, including Finland, Sweden, Norway and Denmark. Different linear and nonlinear models are applied, and the results indicates that a linear model can almost always be used for modeling the series under investigation, even though nonlinear models performs slightly better in some cases. These results indicate that the markets under study are exposed to asymmetric patterns only to a certain degree. Negative shocks generally have a more prominent effect on the markets, but these effects are not really strong. However, in terms of absorbing skewness and kurtosis, nonlinear models outperform linear ones.
Resumo:
Perhaps the most fundamental prediction of financial theory is that the expected returns on financial assets are determined by the amount of risk contained in their payoffs. Assets with a riskier payoff pattern should provide higher expected returns than assets that are otherwise similar but provide payoffs that contain less risk. Financial theory also predicts that not all types of risks should be compensated with higher expected returns. It is well-known that the asset-specific risk can be diversified away, whereas the systematic component of risk that affects all assets remains even in large portfolios. Thus, the asset-specific risk that the investor can easily get rid of by diversification should not lead to higher expected returns, and only the shared movement of individual asset returns – the sensitivity of these assets to a set of systematic risk factors – should matter for asset pricing. It is within this framework that this thesis is situated. The first essay proposes a new systematic risk factor, hypothesized to be correlated with changes in investor risk aversion, which manages to explain a large fraction of the return variation in the cross-section of stock returns. The second and third essays investigate the pricing of asset-specific risk, uncorrelated with commonly used risk factors, in the cross-section of stock returns. The three essays mentioned above use stock market data from the U.S. The fourth essay presents a new total return stock market index for the Finnish stock market beginning from the opening of the Helsinki Stock Exchange in 1912 and ending in 1969 when other total return indices become available. Because a total return stock market index for the period prior to 1970 has not been available before, academics and stock market participants have not known the historical return that stock market investors in Finland could have achieved on their investments. The new stock market index presented in essay 4 makes it possible, for the first time, to calculate the historical average return on the Finnish stock market and to conduct further studies that require long time-series of data.
Resumo:
A linear time approximate maximum likelihood decoding algorithm on tail-biting trellises is presented, that requires exactly two rounds on the trellis. This is an adaptation of an algorithm proposed earlier with the advantage that it reduces the time complexity from O(m log m) to O(m) where m is the number of nodes in the tail-biting trellis. A necessary condition for the output of the algorithm to differ from the output of the ideal ML decoder is deduced and simulation results on an AWGN channel using tail-biting trellises for two rate 1/2 convolutional codes with memory 4 and 6 respectively, are reported.
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
The linear stability analysis of a plane Couette flow of viscoelastic fluid have been studied with the emphasis on two dimensional disturbances with wave number k similar to Re-1/2, where Re is Reynolds number based on maximum velocity and channel width. We employ three models to represent the dilute polymer solution: the classical Oldroyd-B model, the Oldroyd-B model with artificial diffusivity and the non-homogeneous polymer model. The result of the linear stability analysis is found to be sensitive to the polymer model used. While the plane Couette flow is found to be stable to infinitesimal disturbances for the first two models, the last one exhibits a linear instability.
Resumo:
This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
In this paper, the behaviour of a group of autonomous mobile agents under cyclic pursuit is studied. Cyclic pursuit is a simple distributed control law, in which the agent i pursues agent i + 1 modulo n.. The equations of motion are linear, with no kinematic constraints on motion. Behaviourally, the agents are identical, but may have different controller gains. We generalize existing results in the literature and show that by selecting these gains, the behavior of the agents can be controlled. They can be made to converge at a point or be directed to move in a straight line. The invariance of the point of convergence with the sequence of pursuit is also shown.
Resumo:
Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate Processor performance to micro-architecture parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaike's information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.