615 resultados para Learning space design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of construction projects and the fragmentation of the construction industry undertaking those projects has effectively resulted in linear, uncoordinated and highly variable project processes in the UK construction sector. Research undertaken at the University of Salford resulted in the development of an improved project process, the Process Protocol, which considers the whole lifecycle of a construction project whilst integrating its participants under a common framework. The Process Protocol identifies the various phases of a construction project with particular emphasis on what is described in the manufacturing industry as the ‘fuzzy front end’. The participants in the process are described in terms of the activities that need to be undertaken in order to achieve a successful project and process execution. In addition, the decision-making mechanisms, from a client perspective, are illustrated and the foundations for a learning organization/industry are facilitated within a consistent Process Protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of Intelligent Mobile Robots have been developed at the University of Reading. They are completely autonomous in that no umbilical cord attaches to them to extra power supplies or computer station: further, they are not radio controlled. In this paper, the robots are discussed, in their various forms, and the individual behaviours and characteristics which appear are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a Dual-Magnet Magnetic Compliance Unit (DMCU) for use in medium sized space rover platforms to enhance terrain handling capabilities and speed of traversal. An explanation of magnetic compliance and how it can be applied to space robotics is shown, along with an initial mathematical model for this system. A design for the DMCU is proposed along with a 4-wheeled DMCU Testing Rig.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expanding national services sectors and global competition aggravate current and perceived future market pressures on traditional manufacturing industries. These perceptions of change have provoked a growing intensification of geo-political discourses on technological innovation and ‘learning’, and calls for competency in design among other professional skills. However, these political discourses on innovation and learning have paralleled public concerns with the apparent ‘growth pains’ from factory closures and subsequent increases in unemployment, and its debilitating social and economic implications for local and regional development. In this respect the following investigation sets out to conceptualize change through the complementary and differing perceptions of industry and regional actors’ experiences or narratives, linking these perceptions to their structure-determined spheres of agent-environment interactivity. It aims to determine whether agents’ differing perceptions of industry transformation can have a role in the legitimization of their interests in, and in sustaining their organizational influence over the process of industry-regional transformation. It argues that industry and regional agent perceptions are among the cognitive aspects of agent-environment interactivity that permeate agency. It stresses agents’ ability to reason and manipulate their work environments to preserve their self-regulating interests in, and task representative influence over the multi-jurisdictional space of industry-regional transformation. The contributions of this investigation suggest that agents’ varied perceptions of industry and regional change inform or compete for influence over the redirection of regional, industry and business strategies. This claim offers a greater appreciation for the reflexive and complex institutional dimensions of industry planning and development, and the political responsibility to socially just forms of regional development. It positions the outcomes of this investigation at the nexus of intensifying geo-political discourses on the efficiency and equity of territorial development in Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes the analysis and development of novel tools for the global optimisation of relevant mission design problems. A taxonomy was created for mission design problems, and an empirical analysis of their optimisational complexity performed - it was demonstrated that the use of global optimisation was necessary on most classes and informed the selection of appropriate global algorithms. The selected algorithms were then applied to the di®erent problem classes: Di®erential Evolution was found to be the most e±cient. Considering the speci¯c problem of multiple gravity assist trajectory design, a search space pruning algorithm was developed that displays both polynomial time and space complexity. Empirically, this was shown to typically achieve search space reductions of greater than six orders of magnitude, thus reducing signi¯cantly the complexity of the subsequent optimisation. The algorithm was fully implemented in a software package that allows simple visualisation of high-dimensional search spaces, and e®ective optimisation over the reduced search bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys numerical techniques for the regularization of descriptor (generalized state-space) systems by proportional and derivative feedback. We review generalizations of controllability and observability to descriptor systems along with definitions of regularity and index in terms of the Weierstraß canonical form. Three condensed forms display the controllability and observability properties of a descriptor system. The condensed forms are obtained through orthogonal equivalence transformations and rank decisions, so they may be computed by numerically stable algorithms. In addition, the condensed forms display whether a descriptor system is regularizable, i.e., when the system pencil can be made to be regular by derivative and/or proportional output feedback, and, if so, what index can be achieved. Also included is a a new characterization of descriptor systems that can be made to be regular with index 1 by proportional and derivative output feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on a detailed empirical study of the way narrative task design influences the oral performance of second-language (L2) learners. Building on previous research findings, two dimensions of narrative design were chosen for investigation: narrative complexity and inherent narrative structure. Narrative complexity refers to the presence of simultaneous storylines; in this case, we compared single-story narratives with dual-story narratives. Inherent narrative structure refers to the order of events in a narrative; we compared narratives where this was fixed to others where the events could be reordered without loss of coherence. Additionally, we explored the influence of learning context on performance by gathering data from two comparable groups of participants: 60 learners in a foreign language context in Teheran and 40 in an L2 context in London. All participants recounted two of four narratives from cartoon pictures prompts, giving a between-subjects design for narrative complexity and a within-subjects design for inherent narrative structure. The results show clearly that for both groups, L2 performance was affected by the design of the task: Syntactic complexity was supported by narrative storyline complexity and grammatical accuracy was supported by an inherently fixed narrative structure. We reason that the task of recounting simultaneous events leads learners into attempting more hypotactic language, such as subordinate clauses that follow, for example, while, although, at the same time as, etc. We reason also that a tight narrative structure allows learners to achieve greater accuracy in the L2 (within minutes of performing less accurately on a loosely structured narrative) because the tight ordering of events releases attentional resources that would otherwise be spent on finding connections between the pictures. The learning context was shown to have no effect on either accuracy or fluency but an unexpectedly clear effect on syntactic complexity and lexical diversity. The learners in London seem to have benefited from being in the target language environment by developing not more accurate grammar but a more diverse resource of English words and syntactic choices. In a companion article (Foster & Tavakoli, 2009) we compared their performance with native-speaker baseline data and see that, in terms of nativelike selection of vocabulary and phrasing, the learners in London are closing in on native-speaker norms. The study provides empirical evidence that L2 performance is affected by task design in predictable ways. It also shows that living within the target language environment, and presumably using the L2 in a host of everyday tasks outside the classroom, confers a distinct lexical advantage, not a grammatical one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.