977 resultados para Laser-induced oxidation
Resumo:
Using the axially symmetric time-dependent Gross-Pitaevskii equation we study the Josephson oscillation of an attractive Bose-Einstein condensate (BEC) in a one-dimensional periodic optical-lattice potential. We find that the Josephson frequency is virtually independent of the number of atoms in the BEC and of the interatomic interaction (attractive or repulsive). We study the dependence of the Josephson frequency on the laser wave length and the strength of the optical-lattice potential. For a fixed laser wave length (795 nm), the Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti [Science 293, 843 (2001)]. For a fixed strength, the Josephson frequency remains essentially unchanged for a reasonable variation of laser wave length around 800 nm. However, the Josephson oscillation is disrupted with the increase of laser wave length beyond 2000 nm leading to a collapse of a sufficiently attractive BEC. These features of a Josephson oscillation can be tested experimentally with present setups.
Resumo:
The interface formed between the metal and the porcelain of a LASER welded Ni-Cr-Mo alloy was studied. The characterization was carried out through optical microscopy, scanning electron microscopy, X-ray dispersive spectroscopy-EDS and mechanical testing by three-point flexion test-TPE in the region LASER welded with and without the porcelain. The porcelain adhesion with the alloy alone is possible after the oxidation of the metallic surface and subsequent application of an adhesive called opaco. The applied porcelain, on the base metal and fusion zone presented some distinct behaviors. After the TPF test the base metal presented fractures while that in the fusion zone was completely gone. One noticed that the region submitted to the LASER welding showed less porcelain adhesion than the region of the base metal due to the microestructural refinement of the fusion zone. These results can be evidenced by the EDS of the studied regions. The TPF had demonstrated that the Ni-Cr-Mo alloy submitted to the LASER welding, undergone significant alterations in its mechanical properties after the application of the porcelain.
Resumo:
The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of relief diffraction gratings recorded on a surface of photosensitive Ga10Ge25S65 and Ga5Ge25As5S65 glasses by means of interference of two UV laser beams at 351 nm. The diffraction efficiency (eta) of first diffraction order was measured. Atomic-force-microscope (AFM) was used to perform a 3D imaging analysis of the sample surface topography that shows the superposition of an imprinted grating over the topography of the glass. The change in the absorption edge and the refractive index has been evaluated and a structural approach of the relief grating on the glass surface has been discussed.
Resumo:
New glass forming systems based on Sb2O3-SbPO4 has been explored. These glasses present higher thermal stability against devitrification and higher refractive index than chalcogenide glasses. Under irradiation, using Ar-laser 350nm wavelength and 50 mW power density, change on the coloration is observed. Structural and electronic modifications around Sb cations induced by such treatment have been characterized by XANES measurements at the L-Sb edges. on the one hand, XANES spectra, at the LJ edge, show a decrease of the coordination number for Sb atoms induced by exposure to light indicating a breaking of Sb-O bonds in the glassy network. on the other hand, XANES spectra, at the Lt edge, suggest a change in the oxidation state of Sb atoms. These modifications associated to the photodarkening of the glass is reversible either after a couple of days or after heating the glass at the glass transition temperature, T-g.
Resumo:
Background: the purpose of this study was to evaluate, histologically and radiographically, the effect of photodynamic therapy on the progression of experimentally induced periodontal disease in rats.Methods: Ligatures were placed at the first mandibular molar in rats. The animals were divided into four groups: group 1 (C) received no treatment; group 2 was treated topically with methylene blue (MB; 100 mu g/ml); group 3 was treated with low-level laser therapy (LLLT); and group 4 was treated topically with methylene blue followed by LLLT (4.5 J/cm(2)) (photodynamic therapy; PDT). Rats were sacrificed 5, 15, or 30 days postoperatively. Standardized radiographs were taken to measure bone loss around the mesial root surface of the first molar. Data were analyzed statistically (analysis of variance and Tukey test; P < 0.05). A scoring system was used to evaluate the connective tissue, periodontal ligament, and alveolar bone histologically. Data were analyzed statistically (Kruskal-Wallis test; P < 0.05).Results: Radiographic examination showed that there was significantly less bone loss in Group PDT compared to Group C at 5 and 15 days postoperatively. There was no significant difference in bone loss at 30 days. At 15 days, the histologic results showed significant differences in the extent of inflammatory reaction in the gingival tissue, with a greater extent of chronic inflammatory reaction in Group LLLT.Conclusion: PDT transiently reduced the periodontal tissue destruction.
Kinetics and mechanism of the induced redox reaction of [Ni(cyclam)](2+) promoted by SO5 center dot-
Resumo:
Oxidation of [Ni(cyclam)](2+), cyclam = 1,4,8,11-tetraazacyclotetradecane, accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni(cyclam)](3+) under the conditions: [Ni(cyclam)](2+) = 6.0 x 10(-3) M; initial [Ni(cyclam)](3+) = 8.0 x 10(-6) M; [cyclam] = 6.0 x 10(-3) M; [SO2] = (1.0-5.0) x 10(-4) M and 1.0 M perchloric acid in oxygen saturated solutions at 25.0 degrees C and ionic strength = 1.0 M. The oxidation reaction exhibits autocatalytic behavior in which the induction period depends on the initial Ni(III) concentration. A kinetic study of the reduction of Ni(III) by SO2 under anaerobic conditions, and the oxidation of Ni(II), showed that the rate-determining step involves reduction of Ni(III) by SO2 to produce the SO3.- radical, which rapidly reacts with dissolved oxygen to produce SO5.- and rapidly oxidizes Ni(II). The results clearly show a redox cycling process which depends on the balance of SO2 and oxygen concentrations in solution.
Resumo:
In situ solid state oxidation reaction for an alternative La1-xSrxMnO3 (x = 0, 0.1, 0.2 and 0.3) formation is reported. Samples have been obtained by using strontium peroxide, lanthanum and manganese (III) oxide reagents. Strontium peroxide has induced the oxidation of Mn+3 to Mn+4. Lanthanum strontium-doped manganite was obtained without secondary phase formation. La0.825Sr0.175MnO3 showed two structural transitions. The first from 88 to 373 K and the second at 1073 K. which are explained by Jahn-Teller effect at low temperature and cation displacement at high temperature. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Background: the purpose of this pilot study was to evaluate the healing potential and reosseointegration in ligature-induced peri-implantitis defects adjacent to various dental implant surfaces following lethal photosensitization.Methods: A total of 36 dental implants with 4 different surface coatings (9 commercially pure titanium surface [CPTi]; 9 titanium plasma-sprayed [TPS]; 9 hydroxyapatite [HA]; and 9 acid-etched [AE]) were inserted in 6 male mongrel dogs 3 months after extraction of mandibular premolars. After a 2-month period of ligature-induced peri-implantitis and 12 months of natural peri-implantitis progression, only 19 dental implants remained. The dogs underwent surgical debridement of the remaining dental implant sites and lethal photosensitization by combination of toluidine blue O (100 mug/ml) and irradiation with diode laser. All exposed dental implant surfaces and bone craters were meticulously cleaned by mechanical means, submitted to photodynamic therapy, and guided bone regeneration (GBR) using expanded polytetrafluoroethylene (ePTFE) membranes. Five months later, biopsies of the implant sites were dissected and prepared for ground sectioning and analysis.Results: the percentage of bone fill was HA: 48.28 +/- 15.00; TPS: 39.54 +/- 12.34; AE: 26.88 +/- 22.16; and CPTi: 26.70 +/- 16.50. The percentage of reosseointegration was TPS: 25.25 +/- 11.96; CPTi: 24.91 +/- 17.78; AE: 17.30 +/- 15.41; and HA: 15.83 +/- 9.64.Conclusion: These data suggest that lethal photosensitization may have potential in the treatment of peri-implantitis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mm decreased THP-1 cell viability after a 24 h and 48 h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mm TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mm TEGDMA compared to untreated controls after a 24 h and 48 h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.