881 resultados para Large-scale Analysis
Resumo:
To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.
Resumo:
Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source.
Resumo:
Strong convective events can produce extreme precipitation, hail, lightning or gusts, potentially inducing severe socio-economic impacts. These events have a relatively small spatial extension and, in most cases, a short lifetime. In this study, a model is developed for estimating convective extreme events based on large scale conditions. It is shown that strong convective events can be characterized by a Weibull distribution of radar-based rainfall with a low shape and high scale parameter value. A radius of 90km around a station reporting a convective situation turned out to be suitable. A methodology is developed to estimate the Weibull parameters and thus the occurrence probability of convective events from large scale atmospheric instability and enhanced near-surface humidity, which are usually found on a larger scale than the convective event itself. Here, the probability for the occurrence of extreme convective events is estimated from the KO-index indicating the stability, and relative humidity at 1000hPa. Both variables are computed from ERA-Interim reanalysis. In a first version of the methodology, these two variables are applied to estimate the spatial rainfall distribution and to estimate the occurrence of a convective event. The developed method shows significant skill in estimating the occurrence of convective events as observed at synoptic stations, lightning measurements, and severe weather reports. In order to take frontal influences into account, a scheme for the detection of atmospheric fronts is implemented. While generally higher instability is found in the vicinity of fronts, the skill of this approach is largely unchanged. Additional improvements were achieved by a bias-correction and the use of ERA-Interim precipitation. The resulting estimation method is applied to the ERA-Interim period (1979-2014) to establish a ranking of estimated convective extreme events. Two strong estimated events that reveal a frontal influence are analysed in detail. As a second application, the method is applied to GCM-based decadal predictions in the period 1979-2014, which were initialized every year. It is shown that decadal predictive skill for convective event frequencies over Germany is found for the first 3-4 years after the initialization.
Resumo:
Aim Positive regional correlations between biodiversity and human population have been detected for several taxonomic groups and geographical regions. Such correlations could have important conservation implications and have been mainly attributed to ecological factors, with little testing for an artefactual explanation: more populated regions may show higher biodiversity because they are more thoroughly surveyed. We tested the hypothesis that the correlation between people and herptile diversity in Europe is influenced by survey effort
Resumo:
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
The correlations between the evolution of the Super Massive Black Holes (SMBHs) and their host galaxies suggests that the SMBH accretion on sub-pc scales (active galactice nuclei, AGN) is linked to the building of the galaxy over kpc scales, through the so called AGN feedback. Most of the galaxy assembly occurs in overdense large scale structures (LSSs). AGN residing in powerful sources in LSSs, such as the proto-brightest cluster galaxies (BCGs), can affect the evolution of the surrounding intra-cluster medium (ICM) and nearby galaxies. Among distant AGN, high-redshift radio-galaxies (HzRGs) are found to be excellent BCG progenitor candidates. In this Thesis we analyze novel interferometric observations of the so-called "J1030" field centered around the z = 6.3 SDSS Quasar J1030+0524, carried out with the Atacama large (sub-)millimetre array (ALMA) and the Jansky very large array (JVLA). This field host a LSS assembling around a powerful HzRG at z = 1.7 that shows evidence of positive AGN feedback in heating the surrounding ICM and promoting star-formation in multiple galaxies at hundreds kpc distances. We report the detection of gas-rich members of the LSS, including the HzRG. We showed that the LSS is going to evolve into a local massive cluster and the HzRG is the proto-BCG. we unveiled signatures of the proto-BCG's interaction with the surrounding ICM, strengthening the positive AGN feedback scenario. From the JVLA observations of the "J1030" we extracted one of the deepest extra-galactic radio surveys to date (~12.5 uJy at 5 sigma). Exploiting the synergy with the X-ray deep survey (~500 ks) we investigated the relation of the X-ray/radio emission of a X-ray-selected sample, unveiling that the radio emission is powered by different processes (star-formation and AGN), and that AGN-driven sample is mostly composed by radio-quiet objects that display a significant X-ray/radio correlation.
Resumo:
In this thesis we present the development and the current status of the IFrameNet project, aimed at the construction of a large-scale lexical semantic resource for the Italian language based on Frame Semantics theories. We will begin by contextualizing our work in the wider context of Frame Semantics and of the FrameNet project, which, since 1997, has attempted to apply these theories to lexicography. We will then analyse and discuss the applicability of the structure of the American resource to Italian and more specifically we will focus on the domain of fear, worry, and anxiety. We will finally propose some modifications aimed at improving this domain of the resource in relation to its coherence, its ability to accurately represent the linguistic reality and in particular in order to make it possible to apply it to Italian.
Resumo:
Landslides are common features of the landscape of the north-central Apennine mountain range and cause frequent damage to human facilities and infrastructure. Most of these landslides move periodically with moderate velocities and, only after particular rainfall events, some accelerate abruptly. Synthetic aperture radar interferometry (InSAR) provides a particularly convenient method for studying deforming slopes. We use standard two-pass interferometry, taking advantage of the short revisit time of the Sentinel-1 satellites. In this paper we present the results of the InSAR analysis developed on several study areas in central and Northern Italian Apennines. The aims of the work described within the articles contained in this paper, concern: i) the potential of the standard two-pass interferometric technique for the recognition of active landslides; ii) the exploration of the potential related to the displacement time series resulting from a two-pass multiple time-scale InSAR analysis; iii) the evaluation of the possibility of making comparisons with climate forcing for cognitive and risk assessment purposes. Our analysis successfully identified more than 400 InSAR deformation signals (IDS) in the different study areas corresponding to active slope movements. The comparison between IDSs and thematic maps allowed us to identify the main characteristics of the slopes most prone to landslides. The analysis of displacement time series derived from monthly interferometric stacks or single 6-day interferograms allowed the establishment of landslide activity thresholds. This information, combined with the displacement time series, allowed the relationship between ground deformation and climate forcing to be successfully investigated. The InSAR data also gave access to the possibility of validating geographical warning systems and comparing the activity state of landslides with triggering probability thresholds.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its own replication. The gene ZNRD1 (zinc ribbon domain-containing 1) has been identified as encoding a potential host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and resequencing efforts to more precisely map causal genes. METHODS: Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay. RESULTS: Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype (single-nucleotide polymorphism rs1048412; [Formula: see text]), independently of HLA-A10 influence. siRNA-based functional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the transcription level in both lymphoid and nonlymphoid cells. CONCLUSION: Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-positive individuals.
Resumo:
The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.
Resumo:
Alternative splicing produces multiple isoforms from the same gene, thus increasing the number of transcripts of the species. Alternative splicing is a virtually ubiquitous mechanism in eukaryotes, for example more than 90% of protein-coding genes in human are alternatively spliced. Recent evolutionary studies showed that alternative splicing is a fast evolving and highly species- specific mechanism. The rapid evolution of alternative splicing was considered as a contribution to the phenotypic diversity between species. However, the function of many isoforms produced by alternative splicing remains unclear and they might be the result of noisy splicing. Thus, the functional relevance of alternative splicing and the evolutionary mechanisms of its rapid divergence among species are still poorly understood. During my thesis, I performed a large-scale analysis of the regulatory mechanisms that drive the rapid evolution of alternative splicing. To study the evolution of alternative splicing regulatory mechanisms, I used an extensive RNA-sequencing dataset comprising 12 tetrapod species (human, chimpanzee and bonobo, gorilla, orangutan, macaque, marmoset, mouse, opossum, platypus, chicken and frog) and 8 tissues (cerebellum, brain, heart, kidney, liver, testis, placenta and ovary). To identify the catalogue of alternative splicing eis-acting regulatory elements in the different tetrapod species, I used a previously defined computational approach. This approach is a statistical analysis of exons/introns and splice sites composition and relies on a principle of compensation between splice sites strength and the presence of additional regulators. With an evolutionary comparative analysis of the exonic eis-acting regulators, I showed that these regulatory elements are generally shared among primates and more conserved than non-regulatory elements. In addition, I showed that the usage of these regulatory elements is also more conserved than expected by chance. In addition to the identification of species- specific eis-acting regulators, these results may explain the rapid evolution of alternative splicing. I also developed a new approach based on evolutionary sequence changes and corresponding alternative splicing changes to identify potential splicing eis-acting regulators in primates. The identification of lineage-specific substitutions and corresponding lineage-specific alternative splicing changes, allowed me to annotate the genomic sequences that might have played a role in the alternative splicing pattern differences among primates. Finally, I showed that the identified splicing eis-acting regulator datasets are enriched in human disease-causing mutations, thus confirming their biological relevance.
Resumo:
Fueled by ever-growing genomic information and rapid developments of proteomics–the large scale analysis of proteins and mapping its functional role has become one of the most important disciplines for characterizing complex cell function. For building functional linkages between the biomolecules, and for providing insight into the mechanisms of biological processes, last decade witnessed the exploration of combinatorial and chip technology for the detection of bimolecules in a high throughput and spatially addressable fashion. Among the various techniques developed, the protein chip technology has been rapid. Recently we demonstrated a new platform called “Spacially addressable protein array” (SAPA) to profile the ligand receptor interactions. To optimize the platform, the present study investigated various parameters such as the surface chemistry and role of additives for achieving high density and high-throughput detection with minimal nonspecific protein adsorption. In summary the present poster will address some of the critical challenges in protein micro array technology and the process of fine tuning to achieve the optimum system for solving real biological problems.
Resumo:
Objectives: This study provides the first large scale analysis of the age at which adolescents in medieval England entered and completed the pubertal growth spurt. This new method has implications for expanding our knowledge of adolescent maturation across different time periods and regions. Methods: In total, 994 adolescent skeletons (10-25 years) from four urban sites in medieval England (AD 900-1550) were analysed for evidence of pubertal stage using new osteological techniques developed from the clinical literature (i.e. hamate hook development, CVM, canine mineralisation, iliac crest ossification, radial fusion). Results: Adolescents began puberty at a similar age to modern children at around 10-12 years, but the onset of menarche in girls was delayed by up to 3 years, occurring around 15 for most in the study sample and 17 years for females living in London. Modern European males usually complete their maturation by 16-18 years; medieval males took longer with the deceleration stage of the growth spurt extending as late as 21 years. Conclusions: This research provides the first attempt to directly assess the age of pubertal development in adolescents during the tenth to seventeenth centuries. Poor diet, infections, and physical exertion may have contributed to delayed development in the medieval adolescents, particularly for those living in the city of London. This study sheds new light on the nature of adolescence in the medieval period, highlighting an extended period of physical and social transition.
Resumo:
Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.