992 resultados para Lambda calculus
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
This paper investigates the adoption of entropy for analyzing the dynamics of a multiple independent particles system. Several entropy definitions and types of particle dynamics with integer and fractional behavior are studied. The results reveal the adequacy of the entropy concept in the analysis of complex dynamical systems.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indices. We analyze the Dow Jones Industrial Average ( ∧ DJI) and the NASDAQ Composite ( ∧ IXIC) indexes at a daily time horizon. The methods and algorithms that have been explored for description of physical phenomena become an effective background, and even inspiration, for very productive methods used in the analysis of economical data. We start by applying the classical concepts of signal analysis, Fourier transform, and methods of fractional calculus. In a second phase we adopt a pseudo phase plane approach.
Resumo:
This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several well-known functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorithm and to control its convergence.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
The application of fractional-order PID controllers is now an active field of research. This article investigates the effect of fractional (derivative and integral) orders upon system's performance in the velocity control of a servo system. The servo system consists of a digital servomechanism and an open-architecture software environment for real-time control experiments using MATLAB/Simulink tools. Experimental responses are presented and analyzed, showing the effectiveness of fractional controllers. Comparison with classical PID controllers is also investigated.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
Applied Mathematical Modelling, Vol.33
Resumo:
This paper addresses the calculation of fractional order expressions through rational fractions. The article starts by analyzing the techniques adopted in the continuous to discrete time conversion. The problem is re-evaluated in an optimization perspective by tacking advantage of the degree of freedom provided by the generalized mean formula. The results demonstrate the superior performance of the new algorithm.
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.