965 resultados para Lagrangian drifters
Resumo:
We show that the extension of the approximate custodial SU(2)(L+R) global symmetry to all the Yukawa interactions of the standard model Lagrangian implies the introduction of sterile right-handed neutrinos and the seesaw mechanism in this sector. In this framework, the observed quark and lepton masses may be interpreted as an effect of physics beyond the standard model. The mechanism used for breaking this symmetry in the Yukawa sector could be different from the one at work in the vector boson sector. We give three model independent examples of these mechanisms.
Resumo:
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G = partial derivative F + fAF arises besides the one of the first order treatment, F = partial derivative A - partial derivative A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is L-P alpha G(2). In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Starting from the Generating functional for the Green Function (GF), constructed from the Lagrangian action in the Duffin-Kemmer-Petiau (DKP) theory (L-approach) we strictly prove that the physical matrix elements of the S-matrix in DKP and Klein-Gordon-Fock (KGF) theories coincide in cases of interacting spin O particles with external and quantized Maxwell and Yang-Mills fields and in case of external gravitational field (without or with torsion), For the proof we use the reduction formulas of Lehmann, Symanzik and Zimmermann (LSZ). We prove that many photons and Yang-Mills particles GF coincide in both theories too. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
We investigate the conformal invariance of massless Duffin-Kemmer-Petiau theory coupled to Riemannian spacetimes. We show that, as usual, in the minimal coupling procedure only the spin I sector of the theory - which corresponds to the electromagnetic field - is conformally invariant. We also show that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the Lagrangian. Such a procedure - besides not modifying the spin I sector - leads to the well-known conformal coupling between the scalar curvature and the massless Klein-Gordon-Fock field. Going beyond the Riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2) x U-Y(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the higgsing of three-dimensional N = 6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N = 6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the spin of the electron in a non-relativistic context by using the Galilean covariant Pauli-Dirac equation. From a non-relativistic Lagrangian density, we find an appropriate Dirac-like Hamiltonian in the momentum representation, which includes the spin operator in the Galilean covariant framework. Within this formalism, we show that the total angular momentum appears as a constant of motion. Additionally, we propose a non-minimal coupling that describes the Galilean interaction between an electron and the electromagnetic field. Thereby, we obtain, in a natural way, the Hamiltonian including all the essential interaction terms for the electron in a general vector field.