946 resultados para L cell
Resumo:
Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.
Resumo:
Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.
Resumo:
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.
Resumo:
Aberrant activation of Wnt/β-catenin signaling, resulting in the expression of Wnt-regulated oncogenes, is recognized as a critical factor in the etiology of colorectal cancer. Occupancy of β-catenin at promoters of Wnt target genes drives transcription, but the mechanism of β-catenin action remains poorly understood. Here, we show that CARM1 (coactivator-associated arginine methyltransferase 1) interacts with β-catenin and positively modulates β-catenin-mediated gene expression. In colorectal cancer cells with constitutively high Wnt/β-catenin activity, depletion of CARM1 inhibits expression of endogenous Wnt/β-catenin target genes and suppresses clonal survival and anchorage-independent growth. We also identified a colorectal cancer cell line (RKO) with a low basal level of β-catenin, which is dramatically elevated by treatment with Wnt3a. Wnt3a also increased the expression of a subset of endogenous Wnt target genes, and CARM1 was required for the Wnt-induced expression of these target genes and the accompanying dimethylation of arginine 17 of histone H3. Depletion of β-catenin from RKO cells diminished the Wnt-induced occupancy of CARM1 on a Wnt target gene, indicating that CARM1 is recruited to Wnt target genes through its interaction with β-catenin and contributes to transcriptional activation by mediating events (including histone H3 methylation) that are downstream from the actions of β-catenin. Therefore, CARM1 is an important positive modulator of Wnt/β-catenin transcription and neoplastic transformation, and may thereby represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/β-catenin signaling.
Resumo:
PURPOSE: Recent evidence suggests that cancer stem cells (CSC) are responsible for key elements of colon cancer progression and recurrence. Germline variants in CSC genes may result in altered gene function and/or activity, thereby causing interindividual differences in a patient's tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of CSC genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II colon cancer.
EXPERIMENTAL DESIGN: A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole blood samples were analyzed for germline polymorphisms in genes that have been previously associated with colon CSC (CD44, Prominin-1, DPP4, EpCAM, ALCAM, Msi-1, ITGB1, CD24, LGR5, and ALDH1A1) by PCR-RFLP or direct DNA-sequencing.
RESULTS: The minor alleles of CD44 rs8193 C>T, ALCAM rs1157 G>A, and LGR5 rs17109924 T>C were significantly associated with increased TTR (9.4 vs. 5.4 years; HR, 0.51; 95% CI: 0.35-0.93; P = 0.022; 11.3 vs. 5.7 years; HR, 0.56; 95% CI: 0.33-0.94; P = 0.024, and 10.7 vs. 5.7 years; HR, 0.33; 95% CI: 0.12-0.90; P = 0.023, respectively) and remained significant in the multivariate analysis stratified by ethnicity. In recursive partitioning, a specific gene variant profile including LGR5 rs17109924, CD44 rs8193, and ALDH1A1 rs1342024 represented a high-risk subgroup with a median TTR of 1.7 years (HR, 6.71, 95% CI: 2.71-16.63, P < 0.001).
CONCLUSION: This is the first study identifying common germline variants in colon CSC genes as independent prognostic markers for stage III and high-risk stage II colon cancer patients.
Resumo:
Antimicrobial peptides from amphibian skin secretion display remarkable broad-spectrum antimicrobial activity and are thus promising for the discovery of new antibiotics. In this study, we report a novel peptide belonging to the phylloseptin family of antimicrobial peptides, from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea, which was named Phylloseptin-PBa. Degenerate primers complementary to putative signal peptide sites of frog skin peptide precursor-encoding cDNAs were designed to interrogate a skin secretion-derived cDNA library from this frog. Subsequently, the peptide was isolated and identified using reverse phase HPLC and MS/MS fragmentation. The synthetic replicate was demonstrated to have activity against S. aureus, E. coli and C. albicans at concentrations of 8, 128 and 8 mg/L, respectively. In addition, it exhibited anti-proliferative activity against the human cancer cell lines, H460, PC3 and U251MG, but was less active against a normal human cell line (HMEC). Furthermore, a haemolysis assay was performed to assess mammalian cell cytotoxicity of Phylloseptin-PBa. This peptide contained a large proportion of α-helical domain, which may explain its antimicrobial and anticancer activities.
Resumo:
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Resumo:
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POP were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced the ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment.
Resumo:
This Letter describes the continued SAR exploration of small molecule Legumain inhibitors with the aim of developing a potent and selective in vitro tool compound. Work continued in this Letter explores the use of alternative P2-P3 linker units and the P3 group SAR which led to the identification of 10t, a potent, selective and cellularly active Legumain inhibitor. We also demonstrate that 10t has activity in both cancer cell viability and colony formation assays.
Resumo:
The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.
Resumo:
It has previously been reported that the a-defensins, found in the granules of polymorphonuclear leukocytes (neutrophils/ PMNs), are cytolytic for human tumour cells in vitro. Objective: To identify and quantify the a- defensins, HNP-1, HNP-2 and HNP-3 in healthy and tumour tissue from patients with oral squamous cell carcinoma using HPLC, mass spectrometry and amino acid sequencing. Methods: All patients (n=5) were diagnosed with oral squamous cell carcinoma of the tongue.Biopsy tissue from the site of the tumour (n=5) and a non-affected region of the tongue (n=5) was snap frozen and subsequently stored at -70 ºC until analysed. Peptides were extracted from the 10 tissue biopsies using acidified ethanol. Peptide extracts were separated by reverse-phase HPLC . All tumour and control tissue samples were individually analysed under identical conditions with a flow rate of l ml/min, ambient column temperature and absorbance detection at 214 and 280 nm. Fractions (1ml) were collected automatically. HPLC fractions were analysed by MALDI-MS using a linear time-of-flight Voyager DE-mass spectrometer (PerSeptive Biosystems, UK). Using this system the detection limit was 10 fmol. Peptides with molecular masses corresponding to those reported for the a-defensins were deemed of interest and were further subject to complete structural analysis by automated Edman degradation using an Applied Biosystems 491 Procise microsequencer. Results: MALDI-MS revealed a triad of peptides of molecular masses 3442 Da, 3371 Da and 3486 Da in both healthy and tumour tissue. Full length sequence data were obtained for the three a-defensins, unequivocally identifying their presence in both tumour and healthy tissue. Analysis of the MALDI-MS and sequence data indicated that the a-defensins were overexpressed (up to 12 fold) in tumour tissue. Conclusion: This study demonstrates the feasibility of screening tumour tissue for novel peptides/proteins using HPLC and MALDI-MS.The role of a-defensins in oral squamous cell carcinoma of the tongue requires further investigation.
Resumo:
Cancer is one of the leading causes of death in the world. Despite this, a growing number of people are surviving the disease due to medical advancements and the development of numerous new therapies. Doxorubicin, a chemotherapeutic agent, is a widely-used and successful first-line anti-tumour treatment. However, the established toxic and deleterious effects of the drug on the cardiovascular system confer increased risk of congestive heart failure, thereby necessitating the use of reduced doxorubicin doses. In order to investigate how these events are initiated, mouse cardiomyocytes (HL-1) were treated in vitro with varying concentrations of doxorubicin (0.5-4.0 µmol/L). Following treatment (24h), a marked level of cell death was observed in comparison to untreated cardiomyocytes; the level of death appeared to correlate with the concentration of the drug used. Western blotting revealed the cleavage of full length Poly (ADP-ribose) polymerase (PARP) into 89 and 24kDa fragments, a process which is instrumental in triggering programmed cell death/apoptosis. Importantly, results suggested that this event may be independent of caspase 3 cleavage and thus activation. A number of previous studies have reported a functional role for both Mitofusin-2 (Mfn2) and NADPH oxidase 2 (Nox2) in the cardiotoxic response. Given that PARP cleavage is a validated indicator of cellular apoptosis, these results clearly indicate that this marker could be used in future studies when determining if depletion of the above proteins would cause a reduction in or eradicate the pro-apoptotic action of this agent on cardiomyocytes. Such investigations may lead to significant developments in ensuring that doxorubicin can achieve its full therapeutic anti-tumour potential without causing the subsequent deleterious effects on the cardiovascular system.
Resumo:
Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.
Resumo:
Introduction The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of ‘isotoxic’ radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable.
Methods and analysis Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years.
Ethics and dissemination The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West—Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally.
Trial registration number NCT01836692; Pre-results.