939 resultados para LÍMITES
Resumo:
Este informe contiene cuatro partes: (a) diseño previo, (b) instrumentos y procedimientos de recolección y análisis de la información, (c) descripción de la implementación y (d) nuevo diseño. En el diseño previo, nos centramos en la delimitación del tema matemático, la formulación de los objetivos y las tareas para lograr el aprendizaje. Con los instrumentos y procedimientos de recolección y análisis de la información, evaluamos la actuación de los estudiantes, el diseño y la implementación. En la descripción de la implementación, mostramos los cambios que realizamos al diseño previo durante la implementación con su respectiva justi cación. Por último, en el nuevo diseño explicamos las mejoras que realizamos a las tareas con motivo del análisis de sus debilidades, amenazas, fortalezas y oportunidades.
Resumo:
El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.
Un problema curioso para la comprensión de las determinaciones del tipo infinito e infinito negativo
Resumo:
Muchos alumnos de cursos posteriores al segundo grado de BUP tienen a nivel de información, el conocimiento de los límites del tipo infinito y menos infinito. Saben que son indeterminadas, pero en principio, el concepto no está suficientemente integrado en su estructura racional. Para corregir esto, les sugiero la resolución del siguiente problema, que no recuerdo de donde lo tomé o a quién se lo oí.
Resumo:
A menudo se piensa que en las Matemáticas no 69 hay lugar para el ensayo y el error, propagando la idea de que gran parte de la labor del matemático es tener la ocurrencia apropiada. En este artículo mostramos dos problemas que, aunque aparentemente deberían resolverse usando la misma idea, son resueltos sin justificación alguna en los libros de texto utilizando ideas diferentes. Además, presentamos otra situación mucho más próxima al estudiante con la misma dificultad subyacente y que sirve para explicar dicha dificultad de un modo más adecuado al nivel del alumno.
Resumo:
Que justo en medio de la calzada de la Avenue des Martyrs de Douz, en los límites del Sahara tunecino, donde vi un papel que me llamó la atención. Estaba arrugado en una bola y por unos instantes dudé en agacharme a recogerlo. Pero los trazos intermitentes entre las arrugas me resultaban tan familiares que no pude evitar recoger del suelo lo que alguien había tirado, probablemente con rabia. Mi acto implicaría abrir una conversación sobre un tema incómodo y poco natural mientras uno está de vacaciones, toda una verdadera provocación. Sin embargo, no podía dejar escapar una ocasión como aquella. Vivía un fenómeno insólito que superaba los límites de imaginación. Así que me agaché y cogí del suelo aquel lío de papel.
Resumo:
En este artículo se estudia una familia de juegos infinitos y se caracteriza, en dos sentidos diferentes, cuándo se da el equilibrio. El trabajo está escrito para ser aprovechado directamente en el aula, por eso se realiza el estudio desde casos sencillos y particulares y se conduce al lector hacia una primera generalización. Obtenida la primera solución general, se discute su aplicabilidad real y se propone otra generalización, diferente a la primera, en consonancia con la realidad. Esta segunda generalización requiere de la introducción del concepto de apuesta y de la caracterización general de juego justo o equilibrado.
Resumo:
En este articulo ofrecemos una panorámica de los contenidos de los programas oficiales de matemáticas en la segunda enseñanza española de este siglo, así como las formas en las que un conjunto de libros de texto han presentado a los alumnos ciertos temas que hemos seleccionado: longitud de la circunferencia, área del circulo, área de la superficie esférica, volumen de la esfera, números negativos y noción de limite.
Resumo:
En este artículo presentamos un estudio contextualizado de Cours d’Analyse de Cauchy, analizando su significado e importancia. Presentamos especial atención al grado de elaboración teórica de límites, continuidad, series, números reales funciones y series completas, relacionando las aportaciones de Cauchi del nivel conceptual anterior a esta ahora.
Resumo:
La sección áurea puede ser un tema al que hacer referencia en distintos momentos y etapas del currículo escolar. Es idóneo para mostrar la relación entre las matemáticas y otras asignaturas del ámbito de humanidades y, de esta forma, contribuir a destruir el muro que tradicionalmente separa a los alumnos en «de letras» y «de ciencias». En este articulo, estudiando el ritmo de intensidad de la poesía clásica española, descubrimos cómo en los metros fundamentales y más utilizados por los autores de todos los tiempos podemos encontrar bien razones áureas, bien otras no menos bellas.
Resumo:
La idea del artículo es presentar las pruebas del teorema de Liouville sobre funciones enteras. En este trabajo recalcamos dos importantes aplicaciones, una en la demostración del teorema fundamental del álgebra y otra en el área de las aplicaciones conformes. El presente contiene una breve nota histórica de la vida de Joseph Liouville y su trabajo. También contiene la version del teorema de Liouville para funciones doblemente periódicas, funciones armónicas y aplicaciones cuasiconformes.
Resumo:
En este articulo se pretende hacer ver a los alumnos que el uso de una calculadora gráfica ayuda a comprender el rápido crecimiento de la función exponencial. Por otra parte, en la actividad del cálculo de un limite indeterminado, podemos observar cómo el uso de la calculadora nos permite justificar la necesidad de lo descomposición factorial de polinomios para obtener este tipo de límites, ya que la calculadora, debido a que utiliza un número finito de cifras decimales, puede llegar a introducir errores de bulto.
Resumo:
En este artículo se presentan cuatro propiedades topológicas del conjunto de los números reales, R, que, evidentemente o no, resultan ser todas equivalentes al Axioma del Extremo Superior (AES).
Resumo:
Con la ayuda de algunos ejemplos, se estudia el comportamiento de los sintáxones en los límites corológicos de las unidades fitosociológicas superiores; se muestra que, a medida que nos alejamos de su centro de gravedad, esas unidades pierden poco a poco sus especies y que, en sus límites corológicos, no quedan más especies características de unidades superiores para definir las comunidades. Se evocan entonces algunas consecuencias de esas observaciones: noción de combinación específica original, interpretación fitosociológica de los sintáxones, nomenclatura fitosociológica.
Resumo:
Three different worlds, sometimes concentric and often intersecting —society, theatre and the art of performance— and social work. Diverse worlds that live, reflect and self-reflect and interact, and can also afford an opportunity for meeting, misunderstanding and confrontation, and above all offer the possibility of profound change.This article considers the experience of a theatre company that has spent more than three years moving at the limits of these three universes. To these three worlds can be added an infinite number of words that fill them with meaning and significance: territory, meeting, diversity and search. An artistic experience that has chosen to focus on creating scenarios for debate and to examine the difficulties, the human contradictions and the constant and inexhaustible confrontation with human experience. At the heart of this theatrical activity is all of this, seeking the balance between narration, meeting, investigation and the artistic dimension. This meeting between society, theatre and social work also contains the search for sustainability of this cultural business, in an Italy that has been destroyed by a crisis that is not merely economic, but also of values and, above all, of role models. The guiding theme, though not always made explicit, is always present and essential: the search for beauty.
Resumo:
La información es el elemento primordial en una Institución, sea del carácter que sea. Fluye de cualquier departamento que la integra y esta información hay que recopilarla, ordenarla, sintetizarla, tratarla y por último y más relevante hay que distribuirla. No se puede retener ni ocultar, se debe canalizar para que todos los integrantes de esa empresa la conozcan, la entiendan, la asuman y la hagan suya. Es así como funcionan bien los organismos conociendo lo que trabajan, sus objetivos, sus límites, sus avances y sus logros. Los gabinetes de comunicación son el motor de la documentación. Gestionan los contenidos, crean archivos de datos y documentos y difunden la información, no solo entre los diferentes componentes de la empresa sino también entre los distintos estamentos de la sociedad, proyectando al exterior la imagen de la Institución para la que trabajan.