847 resultados para KNEE PROSTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When compared with similar joint arthroplasties, the prognosis of Total Ankle Replacement (TAR) is not satisfactory although it shows promising results post surgery. To date, most models do not provide the full anatomical functionality and biomechanical range of motion of the healthy ankle joint. This has sparked additional research and evaluation of clinical outcomes in order to enhance ankle prosthesis design. However, the limited biomechanical data that exist in literature are based upon two-dimensional, discrete and outdated techniques1 and may be inaccurate. Since accurate force estimations are crucial to prosthesis design, a paper based on a new biomechanical modeling approach, providing three dimensional forces acting on the ankle joint and the surrounding tissues was published recently, but the identified forces were suspected of being under-estimated, while muscles were . The present paper reports an attempt to improve the accuracy of the analysis by means of novel methods for kinematic processing of gait data, provided in release 4.1 of the AnyBody Modeling System (AnyBody Technology, Aalborg, Denmark) Results from the new method are shown and remaining issues are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To (1) search the English-language literature for original research addressing the effect of cryotherapy on joint position sense (JPS) and (2) make recommendations regarding how soon healthy athletes can safely return to participation after cryotherapy. Data Sources: We performed an exhaustive search for original research using the AMED, CINAHL, MEDLINE, and SportDiscus databases from 1973 to 2009 to gather information on cryotherapy and JPS. Key words used were cryotherapy and proprioception, cryotherapy and joint position sense, cryotherapy, and proprioception. Study Selection: The inclusion criteria were (1) the literature was written in English, (2) participants were human, (3) an outcome measure included JPS, (4) participants were healthy, and (5) participants were tested immediately after a cryotherapy application to a joint. Data Extraction: The means and SDs of the JPS outcome measures were extracted and used to estimate the effect size (Cohen d) and associated 95% confidence intervals for comparisons of JPS before and after a cryotherapy treatment. The numbers, ages, and sexes of participants in all 7 selected studies were also extracted. Data Synthesis: The JPS was assessed in 3 joints: ankle (n 5 2), knee (n 5 3), and shoulder (n 5 2). The average effect size for the 7 included studies was modest, with effect sizes ranging from 20.08 to 1.17, with a positive number representing an increase in JPS error. The average methodologic score of the included studies was 5.4/10 (range, 5–6) on the Physiotherapy Evidence Database scale. Conclusions: Limited and equivocal evidence is available to address the effect of cryotherapy on proprioception in the form of JPS. Until further evidence is provided, clinicians should be cautious when returning individuals to tasks requiring components of proprioceptive input immediately after a cryotherapy treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is organized in depth zones with phenotypically distinct subpopulations of chondrocytes that are exposed to different oxygen tensions. Despite growing evidence of the critical role for oxygen in chondrogenesis, little is known about its effect on chondrocytes from different zones. This study evaluates zonal marker expression of human articular chondrocytes from different zones under various oxygen tensions. Chondrocytes isolated from full-thickness, superficial, and middle/deep cartilage from knee replacement surgeries were expanded and redifferentiated under hypoxic (5% O 2) or normoxic (20% O 2) conditions. Differentiation under hypoxia increased expression of hypoxia-inducible factors 1alpha and 2alpha and accumulation of extracellular matrix, particularly in middle/deep chondrocytes, and favored re-expression of proteoglycan 4 by superficial chondrocytes compared with middle/deep cells. Zone-dependent expression of clusterin varied with culture duration. These results demonstrate that zonal chondrocytes retain important phenotypic differences during in vitro cultivation, and that these characteristics can be improved by altering the oxygen environment. However, transcript levels for pleiotrophin, cartilage intermediate layer protein, and collagen type X were similar between zones, challenging their reliability as zonal markers for tissue-engineered cartilage from osteoarthritis patients. Key factors including oxygen tension and cell source should be considered to prescribe zone-specific properties to tissue-engineered cartilage. © 2012, Mary Ann Liebert, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Strong v Woolworth Ltd (t/as Big W) (2012) 285 ALR 420 the appellant was injured when she fell at a shopping centre outside the respondent’s premises. The appellant was disabled, having had her right leg amputated above the knee and therefore walked with crutches. One of the crutches came into contact with a hot potato chip which was on the floor, causing the crutch to slip and the appellant to fall. The appellant sued in negligence, alleging that the respondent was in breach of its duty of care by failing to institute and maintain a cleaning system to detect spillages and foreign objects within its sidewalk sales area. The issue before the High Court was whether it could be established on the balance of probabilities as to when the hot chip had fallen onto the ground so as to prove causation in fact...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study determined the rate and indication for revision between cemented, uncemented, hybrid and resurfacing groups from NJR (6 th edition) data. Data validity was determined by interrogating for episodes of misclassification. We identified 6,034 (2.7%) misclassified episodes, containing 97 (4.3%) revisions. Kaplan-Meier revision rates at 3 years were 0.9% cemented, 1.9% for uncemented, 1.2% for hybrids and 3.0% for resurfacings (significant difference across all groups, p<0.001, with identical pattern in patients <55 years). Regression analysis indicated both prosthesis group and age significantly influenced failure (p<0.001). Revision for pain, aseptic loosening, and malalignment were highest in uncemented and resurfacing arthroplasty. Revision for dislocation was highest in uncemented hips (significant difference between groups, p<0.001). Feedback to the NJR on data misclassification has been made for future analysis. © 2012 Wichtig Editore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pre-participation screening is commonly used to measure and assess potential intrinsic injury risk. The single leg squat is one such clinical screening measure used to assess lumbopelvic stability and associated intrinsic injury risk. With the addition of a decline board, the single leg decline squat (SLDS) has been shown to reduce ankle dorsiflexion restrictions and allowed greater sagittal plane movement of the hip and knee. On this basis, the SLDS has been employed in the Cricket Australia physiotherapy screening protocols as a measure of lumbopelvic control in the place of the more traditional single leg flat squat (SLFS). Previous research has failed to demonstrate which squatting technique allows for a more comprehensive assessment of lumbopelvic stability. Tenuous links are drawn between kinematics and hip strength measures within the literature for the SLS. Formal evaluation of subjective screening methods has also been suggested within the literature. Purpose: This study had several focal points namely 1) to compare the kinematic differences between the two single leg squatting conditions, primarily the five key kinematic variables fundamental to subjectively assess lumbopelvic stability; 2) determine the effect of ankle dorsiflexion range of motion has on squat kinematics in the two squat techniques; 3) examine the association between key kinematics and subjective physiotherapists’ assessment; and finally 4) explore the association between key kinematics and hip strength. Methods: Nineteen (n=19) subjects performed five SLDS and five SLFS on each leg while being filmed by an 8 camera motion analysis system. Four hip strength measures (internal/external rotation and abd/adduction) and ankle dorsiflexion range of motion were measured using a hand held dynamometer and a goniometer respectively on 16 of these subjects. The same 16 participants were subjectively assessed by an experienced physiotherapist for lumbopelvic stability. Paired samples t-tests were performed on the five predetermined kinematic variables to assess the differences between squat conditions. A Bonferroni correction for multiple comparisons was used which adjusted the significance value to p = 0.005 for the paired t-tests. Linear regressions were used to assess the relationship between kinematics, ankle range of motion and hip strength measures. Bivariate correlations between hip strength measures and kinematics and pelvic obliquity were employed to investigate any possible relationships. Results: 1) Significant kinematic differences between squats were observed in dominant (D) and non-dominant (ND) end of range hip external rotation (ND p = <0.001; D p = 0.004) and hip adduction kinematics (ND p = <0.001; D p = <0.001). With the mean angle, only the non-dominant leg observed significant differences in hip adduction (p = 0.001) and hip external rotation (p = <0.001); 2) Significant linear relationships were observed between clinical measures of ankle dorsiflexion and sagittal plane kinematic namely SLFS dominant ankle (p = 0.006; R2 = .429), SLFS non-dominant knee (p = 0.015; R2 = .352) and SLFS non-dominant ankle (p = 0.027; R2 = .305) kinematics. Only the dominant ankle (p = 0.020; R2 = .331) was found to have a relationship with the decline squat. 3) Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed. 4) For the non-dominant leg, external rotation strength and abduction strength were found to be significantly correlated with hip rotation kinematics (Newtons r = 0.458 p = 0.049; Normalised for bodyweight: r = 0.469; p = 0.043) and pelvic obliquity (normalised for bodyweight: r = 0.498 p = 0.030) respectively for the SLFS only. No significant relationships were observed in the dominant leg for either squat condition. Some elements of the hip strength screening protocols had linear relationships with kinematics of the lower limb, particularly the sagittal plane movements of the knee and ankle. Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed; Discussion: The key finding of this study illustrated that kinematic differences can occur at the hip without significant kinematic differences at the knee as a result of the introduction of a decline board. Further observations reinforce the role of limited ankle dorsiflexion range of motion on sagittal plane movement of the hip and knee and in turn multiplanar kinematics of the lower limb. The kinematic differences between conditions have clinical implications for screening protocols that employ frontal plane movement of the knee as a guide for femoral adduction and rotation. Subjects who returned stronger hip strength measurements also appeared to squat deeper as characterised by differences in sagittal plane kinematics of the knee and ankle. Despite the aforementioned findings, the relationship between hip strength and lower limb kinematics remains largely tenuous in the assessment of the lumbopelvic stability using the SLS. The association between kinematics and the subjective measures of lumbopelvic stability also remain tenuous between and within SLS screening protocols. More functional measures of hip strength are needed to further investigate these relationships. Conclusion: The type of SLS (flat or decline) should be taken into account when screening for lumbopelvic stability. Changes to lower limb kinematics, especially around the hip and pelvis, were observed with the introduction of a decline board despite no difference in frontal plane knee movements. Differences in passive ankle dorsiflexion range of motion yielded variations in knee and ankle kinematics during a self-selected single leg squatting task. Clinical implications of removing posterior ankle restraints and using the knee as a guide to illustrate changes at the hip may result in inaccurate screening of lumbopelvic stability. The relationship between sagittal plane lower limb kinematics and hip strength may illustrate that self-selected squat depth may presumably be a useful predictor of the lumbopelvic stability. Further research in this area is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Methods: This study compared changes in myokine and myogenic genes following resistance exercise (3 sets of 12 repetitions of maximal unilateral knee extension) in 20 elderly men (67.8 ± 1.0 years) and 15 elderly women (67.2 ± 1.5 years). Results: Monocyte chemotactic protein (MCP)-1, macrophage inhibitory protein (MIP)-1β, interleukin (IL)-6 and MyoD mRNA increased significantly (P < 0.05), whereas myogenin and myostatin mRNA decreased significantly after exercise in both groups. Macrophage-1 (Mac-1) and MCP-3 mRNA did not change significantly after exercise in either group. MIP-1β, Mac-1 and myostatin mRNA were significantly higher before and after exercise in men compared with women. In contrast, MCP-3 and myogenin mRNA were significantly higher before and after exercise in the women compared with the men. Conclusions: In elderly individuals, gender influences the mRNA expression of certain myokines and growth factors, both at rest and after resistance exercise. These differences may influence muscle regeneration following muscle injury

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.