975 resultados para Joint Position Sense
Resumo:
We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi et al. Phys. Rev. A 87, 052103 (2013)]. This inequality places a bound on the statistical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the ``ideal negative result measurement'' procedure with the help of an ancilla qubit. The experimental results show a clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit system, we also demonstrate that three-time joint probabilities do not reproduce certain two-time marginal probabilities.
Resumo:
Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as alpha-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.
Resumo:
The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.
Resumo:
Orthogonal frequency-division multiple access (OFDMA) systems divide the available bandwidth into orthogonal subchannels and exploit multiuser diversity and frequency selectivity to achieve high spectral efficiencies. However, they require a significant amount of channel state feedback for scheduling and rate adaptation and are sensitive to feedback delays. We develop a comprehensive analysis for OFDMA system throughput in the presence of feedback delays as a function of the feedback scheme, frequency-domain scheduler, and rate adaptation rule. Also derived are expressions for the outage probability, which captures the inability of a subchannel to successfully carry data due to the feedback scheme or feedback delays. Our model encompasses the popular best-n and threshold-based feedback schemes and the greedy, proportional fair, and round-robin schedulers that cover a wide range of throughput versus fairness tradeoff. It helps quantify the different robustness of the schedulers to feedback overhead and delays. Even at low vehicular speeds, it shows that small feedback delays markedly degrade the throughput and increase the outage probability. Further, given the feedback delay, the throughput degradation depends primarily on the feedback overhead and not on the feedback scheme itself. We also show how to optimize the rate adaptation thresholds as a function of feedback delay.
Resumo:
A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.
Resumo:
A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.
Resumo:
We develop several novel signal detection algorithms for two-dimensional intersymbol-interference channels. The contribution of the paper is two-fold: (1) We extend the one-dimensional maximum a-posteriori (MAP) detection algorithm to operate over multiple rows and columns in an iterative manner. We study the performance vs. complexity trade-offs for various algorithmic options ranging from single row/column non-iterative detection to a multi-row/column iterative scheme and analyze the performance of the algorithm. (2) We develop a self-iterating 2-D linear minimum mean-squared based equalizer by extending the 1-D linear equalizer framework, and present an analysis of the algorithm. The iterative multi-row/column detector and the self-iterating equalizer are further connected together within a turbo framework. We analyze the combined 2-D iterative equalization and detection engine through analysis and simulations. The performance of the overall equalizer and detector is near MAP estimate with tractable complexity, and beats the Marrow Wolf detector by about at least 0.8 dB over certain 2-D ISI channels. The coded performance indicates about 8 dB of significant SNR gain over the uncoded 2-D equalizer-detector system.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
Orthogonal frequency division multiple access (OFDMA) systems exploit multiuser diversity and frequency-selectivity to achieve high spectral efficiencies. However, they require considerable feedback for scheduling and rate adaptation, and are sensitive to feedback delays. We develop a comprehensive analysis of the OFDMA system throughput as a function of the feedback scheme, frequency-domain scheduler, and discrete rate adaptation rule in the presence of feedback delays. We analyze the popular best-n and threshold-based feedback schemes. We show that for both the greedy and round-robin schedulers, the throughput degradation, given a feedback delay, depends primarily on the fraction of feedback reduced by the feedback scheme and not the feedback scheme itself. Even small feedback delays at low vehicular speeds are shown to significantly degrade the throughput. We also show that optimizing the link adaptation thresholds as a function of the feedback delay can effectively counteract the detrimental effect of delays.
Resumo:
We consider the problem of joint routing, scheduling and power control in a multihop wireless network when the nodes have multiple antennas. We focus on exploiting the multiple degrees-of-freedom available at each transmitter and receiver due to multiple antennas. Specifically we use multiple antennas at each node to form multiple access and broadcast links in the network rather than just point to point links. We show that such a generic transmission model improves the system performance significantly. Since the complexity of the resulting optimization problem is very high, we also develop efficient suboptimal solutions for joint routing, scheduling and power control in this setup.
Resumo:
Transmit antenna selection (AS) is a popular, low hardware complexity technique that improves the performance of an underlay cognitive radio system, in which a secondary transmitter can transmit when the primary is on but under tight constraints on the interference it causes to the primary. The underlay interference constraint fundamentally changes the criterion used to select the antenna because the channel gains to the secondary and primary receivers must be both taken into account. We develop a novel and optimal joint AS and transmit power adaptation policy that minimizes a Chernoff upper bound on the symbol error probability (SEP) at the secondary receiver subject to an average transmit power constraint and an average primary interference constraint. Explicit expressions for the optimal antenna and power are provided in terms of the channel gains to the primary and secondary receivers. The SEP of the optimal policy is at least an order of magnitude lower than that achieved by several ad hoc selection rules proposed in the literature and even the optimal antenna selection rule for the case where the transmit power is either zero or a fixed value.
Resumo:
A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.
Resumo:
The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.
Resumo:
Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.