855 resultados para JAK signalling
Resumo:
The gonadotropin hypothesis proposes that elevated serum gonadotropin levels may increase the risk of epithelial ovarian cancer (EOC). We have studied the effect of treating EOC cell lines (OV207 and OVCAR-3) with FSH or LH. Both gonadotropins activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and increased cell migration that was inhibited by the MAPK 1 inhibitor PD98059. Both extra- and intracellular calcium ion signalling were implicated in gonadotropin-induced ERK1/2 activation as treatment with either the calcium chelator EGTA or an inhibitor of intracellular calcium release, dantrolene, inhibited gonadotropin-induced ERK1/2 activation. Verapamil was also inhibitory, indicating that gonadotropins activate calcium influx via L-type voltage-dependent calcium channels. The cAMP/protein kinase A (PKA) pathway was not involved in the mediation of gonadotropin action in these cells as gonadotropins did not increase intracellular cAMP formation and inhibition of PKA did not affect gonadotropin-induced phosphorylation of ERK1/2. Activation of ERK1/2 was inhibited by the protein kinase C (PKC) inhibitor GF 109203X as well as by the PKCδ inhibitor rottlerin, and downregulation of PKCδ was inhibited by small interfering RNA (siRNA), highlighting the importance of PKCδ in the gonadotropin signalling cascade. Furthermore, in addition to inhibition by PD98059, gonadotropin-induced ovarian cancer cell migration was also inhibited by verapamil, GF 109203X and rottlerin. Similarly, gonadotropin-induced proliferation was inhibited by PD98059, verapamil, GF 109203X and PKCδ siRNA. Taken together, these results demonstrate that gonadotropins induce both ovarian cancer cell migration and proliferation by activation of ERK1/2 signalling in a calcium- and PKCδ-dependent manner.
Resumo:
Transglutaminases are confounding enzymes which are known to play key roles in various cellular processes. In this paper, we aim to bring together several pieces of evidence from published research and literature that suggest a potentially vital role for transglutaminases in receptor tyrosine kinases (RTK) signalling. We cite literature that confirms and suggests the formation of integrin:RTK:transglutaminase complexes and explores the occurrence and functionality of these complexes in a large fraction of the RTK family.
Resumo:
Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.
Resumo:
Flightless (Flii) is upregulated in response to wounding and has been shown to function in wound closure and scarring. In macrophages intracellular Flii negatively modulates TLR signalling and dampens cytokine production. We now show that Flii is constitutively secreted from macrophages and fibroblasts and is present in human plasma. Secretion from fibroblasts is upregulated in response to scratch wounding and LPS-activated macrophages also temporally upregulate their secretion of Flii. Using siRNA, wild-type and mutant proteins we show that Flii is secreted via a late endosomal/lysosomal pathway that is regulated by Rab7 and Stx11. Flii contains 11 leucine rich repeat (LRR) domains in its N-terminus that have nearly 50% similarity to those in the extracellular pathogen binding portion of Toll-like receptor 4 (TLR4). We show secreted Flii can also bind LPS and has the ability to alter macrophage activation. LPS activation of macrophages in Flii depleted conditioned media leads to enhanced macrophage activation and increased TNF secretion compared to cells activated in the presence of Flii. These results show secreted Flii binds to LPS and in doing so alters macrophage activation and cytokine secretion, suggesting that like the intracellular pool of Flii, secreted Flii also has the ability to alter inflammation.
Resumo:
Purpose Managers generally have discretion in determining how components of earnings are presented in financial statements in distinguishing between ‘normal’ earnings and items classified as unusual, special, significant, exceptional or abnormal. Prior research has found that such intra-period classificatory choice is used as a form of earnings management. Prior to 2001, Australian accounting standards mandated that unusually large items of revenue and expense be classified as ‘abnormal items’ for financial reporting, but this classification was removed from accounting standards from 2001. This move by the regulators was partly in response to concerns that the abnormal classification was being used opportunistically to manage reported pre-abnormal earnings. This study extends the earnings management literature by examining the reporting of abnormal items for evidence of intra-period classificatory earnings management in the unique Australian setting. Design/methodology/approach This study investigates associations between reporting of abnormal items and incentives in the form of analyst following and the earnings benchmarks of analysts’ forecasts, earnings levels, and earnings changes, for a sample of Australian top-500 firms for the seven-year period from 1994 to 2000. Findings The findings suggest there are systematic differences between firms reporting abnormal items and those with no abnormal items. Results show evidence that, on average, firms shifted expense items from pre-abnormal earnings to bottom line net income through reclassification as abnormal losses. Originality/value These findings suggest that the standard setters were justified in removing the ‘abnormal’ classification from the accounting standard. However, it cannot be assumed that all firms acted opportunistically in the classification of items as abnormal. With the removal of the standardised classification of items outside normal operations as ‘abnormal’, firms lost the opportunity to use such disclosures as a signalling device, with the consequential effect of limiting the scope of effectively communicating information about the nature of items presented in financial reports.
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11–19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
Prostate cancer is the second most common cause of cancer related deaths in Western men. Despite the significant improvements in current treatment techniques, there is no cure for advanced metastatic, castrate-resistant disease. Early detection and prevention of progression to a castrate-resistant state may provide new strategies to improve survival. A number of growth factors have been shown to act in an autocrine/paracrine manner to modulate prostate cancer tumour growth. Our laboratory has previously shown that ghrelin and its receptors (the functional GHS-R1a and the non-functional GHS-R1b) are expressed in prostate cancer specimens and cell lines. We have shown that ghrelin increases cell proliferation in the PC3 and LNCaP prostate cancer cell lines through activation of ERK1/2, suggesting that ghrelin could regulate prostate cancer cell growth and play a role in the progression of the disease. Ghrelin is a 28 amino-acid peptide hormone, identified to be the natural ligand of the growth hormone secretagogue receptor (GHS-R1a). It is well characterised as a growth hormone releasing and as an orexigenic peptide that stimulates appetite and feeding and regulates energy expenditure and bodyweight. In addition to its orexigenic properties, ghrelin has been shown to play a regulatory role in a number of systems, including the reproductive, immune and cardiovascular systems and may play a role in a number of pathological conditions such as chronic heart failure, anorexia, cachexia, obesity, diabetes and cancer. In cancer, ghrelin and its receptor are expressed in a range of tumours and cancer cell lines and ghrelin has been demonstrated to modulate cell proliferation, apoptosis, migration and invasion in some cell types. The ghrelin gene (GHRL) encodes preproghrelin peptide, which is processed to produce three currently known functional peptides - ghrelin, desacyl ghrelin and obestatin. Prohormone convertases (PCs) have been shown to cleave the preproghrelin peptide into two primary products - the 28 amino acid peptide, ghrelin, and the remaining 117 amino acid C-terminal peptide, C-ghrelin. C-ghrelin can then be further processed to produce the 23 amino acid peptide, obestatin. Ghrelin circulates in two different forms - an octanoylated form (known as ghrelin) and a non-octanoylated form, desacyl ghrelin. The unique post-translational addition of octanoic acid to the serine 3 residue of the propeptide chain to form acylated ghrelin is catalysed by ghrelin O-acyltransferase (GOAT). This modification is necessary for binding of ghrelin to its only known functional receptor, the GHS-R1a. As desacyl ghrelin cannot bind and activate the GHS-R1a, it was initially thought to be an inactive peptide, despite the fact that it circulates at much higher levels than ghrelin. Further research has demonstrated that desacyl ghrelin is biologically active and shares some of the actions of ghrelin, as well as having some opposing and distinct roles. Interestingly, both ghrelin and desacyl ghrelin have been shown to modulate apoptosis, cell differentiation and proliferation in some cell types, and to stimulate cell proliferation through activation of ERK1/2 and PI3K/Akt pathways. The third known peptide product of the ghrelin preprohormone, obestatin, was initially thought to oppose the actions of ghrelin in appetite regulation and food intake and to mediate its effects through the G protein-coupled receptor 39 (GPR39). Subsequent research failed to reproduce the initial findings, however, and the possible anorexigenic effects of obestatin, as well as the identity of its receptor, remain unclear. Obestatin plays some important physiological roles, including roles in improving memory, the inhibition of thirst and anxiety, increased secretion of pancreatic juice, and regulation of cell proliferation, survival, apoptosis and differentiation. Preliminary studies have also shown that obestatin stimulates cell proliferation in some cell types through activation of ERK1/2, Akt and PKC pathways. Overall, however, at the commencement of this PhD project, relatively little was known regarding the functions and mechanisms of action of the preproghrelin-derived functional peptides in modulating prostate cancer cell proliferation. The roles of obestatin, and desacyl ghrelin as potential growth factors had not previously been investigated, and the potential expression and regulation of the preproghrelin processing enzymes, GOAT and prohormone convertases was unknown in prostate cancer cell lines. Therefore, the overall objectives of this study were to: 1. investigate the effects of obestatin on cell proliferation and signaling in prostate cancer cell lines 2. compare the effects of desacyl ghrelin and ghrelin on cell proliferation and signaling in prostate cancer cell lines 3. investigate whether prostate cancer cell lines possess the necessary enzymatic machinery to produce ghrelin and desacyl ghrelin and if these peptides can regulate GOAT expression Our laboratory has previously shown that ghrelin stimulates cell proliferation in the PC3 and LNCaP prostate cancer cell line through activation of the ERK1/2 pathway. In this study it has been demonstrated that treatments with either ghrelin, desacyl ghrelin or obestatin over 72 hours significantly increased cell proliferation in the PC3 prostate cancer cell line but had no significant effect in the RWPE-1 transformed normal prostate cell line. Ghrelin (1000nM) stimulated cell proliferation in the PC3 prostate cancer cell line by 31.66 6.68% (p<0.01) with the WST-1 method, and 13.55 5.68% (p<0.05) with the CyQUANT assay. Desacyl ghrelin (1000nM) increased cell proliferation in PC3 cells by 21.73 2.62% (p<0.01) (WST-1), and 15.46 7.05% (p<0.05) (CyQUANT) above untreated control. Obestatin (1000nM) induced a 28.37 7.47% (p<0.01) (WST-1) and 12.14 7.47% (p<0.05) (CyQUANT) significant increase in cell proliferation in the PC3 prostate cancer cell line. Ghrelin and desacyl ghrelin treatments stimulated Akt and ERK phosphorylation across a range of concentrations (p<0.01). Obestatin treatment significantly stimulated Akt, ERK and PKC phosphorylation (p<0.05). Through the use of specific inhibitors, the MAPK inhibitor U0126 and the Akt1/2 kinase inhibitor, it was demonstrated that ghrelin- and obestatin-induced cell proliferation in the PC3 prostate cancer cell line is mediated through activation of ERK1/2 and Akt pathways. Although desacyl ghrelin significantly stimulated Akt and ERK phosphorylation, U0126 failed to prevent desacyl ghrelin-induced cell proliferation suggesting ghrelin and desacyl ghrelin might act through different mechanisms to increase cell proliferation. Ghrelin and desacyl ghrelin have shown a proliferative effect in osteoblasts, pancreatic -cells and cardiomyocytes through activation of ERK1/2 and PI3K/Akt pathways. Here it has been shown that ghrelin and its non-acylated form exert the same function and stimulate cell proliferation in the PC3 prostate cancer cell line through activation of the Akt pathway. Ghrelin-induced proliferation was also mediated through activation of the ERK1/2 pathway, however, desacyl ghrelin seems to stimulate cell proliferation in an ERK1/2-independent manner. As desacyl ghrelin does not bind and activate GHSR1a, the only known functional ghrelin receptor, the finding that both ghrelin and desacyl ghrelin stimulate cell proliferation in the PC3 cell line suggests that these peptides could be acting through the yet unidentified alternative ghrelin receptor in this cell type. Obestatin treatment also stimulated PKC phosphorylation, however, a direct role for this pathway in stimulating cell proliferation could not be proven using available PKC pathway inhibitors, as they caused significant cell death over the extended timeframe of the cell proliferation assays. Obestatin has been shown to stimulate cell proliferation through activation of PKC isoforms in human retinal epithelial cells and in the human gastric cancer cell line KATO-III. We have demonstrated that all of the prostate-derived cell lines examined (PC3, LNCaP, DU145, 22Rv1, RWPE-1 and RWPE-2) expressed GOAT and at least one of the prohormone convertases, which are known to cleave the proghrelin peptide, PC1/3, PC2 and furin, at the mRNA level. These cells, therefore, are likely to possess the necessary machinery to cleave the preproghrelin protein and to produce the mature ghrelin and desacyl ghrelin peptides. In addition to prohormone convertases, the presence of octanoic acid is essential for acylated ghrelin production. In this study octanoic acid supplementation significantly increased cell proliferation in the PC3 prostate cancer cell line by over 20% compared to untreated controls (p<0.01), but surprisingly, not in the DU145, LNCaP or 22Rv1 prostate cancer cell lines or in the RWPE-1 and RWPE-2 prostate-derived cell lines. In addition, we demonstrated that exogenous ghrelin induced a statistically significant two-fold decrease in GOAT mRNA expression in the PC3 cell line (p<0.05), suggesting that ghrelin could pontentially downregulate its own acylation and, therefore, regulate the balance between ghrelin and desacyl ghrelin. This was not observed, however, in the DU145 and LNCaP prostate cancer cell lines. The GOAT-ghrelin system represents a direct link between ingested nutrients and regulation of ghrelin production and the ghrelin/desacyl ghrelin ratio. Regulation of ghrelin acylation is a potentially attractive and desirable tool for the development of better therapies for a number of pathological conditions where ghrelin has been shown to play a key role. The finding that desacyl ghrelin stimulates cell proliferation in the PC3 prostate cancer cell line, and responds to ghrelin in the same way, suggests that this cell line expresses an alternative ghrelin receptor. Although all the cell lines examined expressed both GHS-R1a and GHS-R1b mRNA, it remains uncertain whether these cell lines express the unidentified alternative ghrelin receptor. It is possible that the varied responses seen could be due to the expression of different ghrelin receptors in different cell lines. In addition to GOAT, prohormone convertases and octanoic acid availability may regulate the production of different peptides from the ghrelin preprohormone. The studies presented in this thesis provide significant new information regarding the roles and mechanisms of action of the preproghrelin-derived peptides, ghrelin, desacyl ghrelin and obestatin, in modulating prostate cancer cell line proliferation. A number of key questions remain to be resolved, however, including the identification of the alternative ghrelin/desacyl ghrelin receptor, the identification of the obestatin receptor, a clarification of the signaling mechanisms which mediate cell proliferation in response to obestatin treatment and a better understanding of the regulation at both the gene and post-translational levels of functional peptide generation. Further studies investigating the role of the ghrelin axis using in vivo prostate cancer models may be warranted. Until these issues are determined, the potential for the ghrelin axis, to be recognised as a novel useful target for therapy for cancer or other pathologies will be uncertain.
Resumo:
We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.
Resumo:
Ratchetting failure of railhead material adjacent to endpost which is placed in the air gap between the two rail ends at insulated rail joints causes significant economic problems to the railway operators who rely on the proper functioning of these joints for train control using the signalling track circuitry. The ratchetting failure is a localised problem and is very difficult to predict even when complex analytical methods are employed. This paper presents a novel experimental technique that enables measurement of the progressive ratchetting. A special purpose test rig was developed for this purpose and commissioned by the Centre for Railway Engineering at Central Queensland University. The rig also provides the capability of testing of the wheel/rail rolling contract conditions. The results provide confidence that accurate measurement of the localised failure of railhead material can be achieved using the test rig.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.
Resumo:
BACKGROUND: Melanoma is the most lethal form of skin cancer, but recent advances in molecularly targeted agents against the Ras/Raf/MAPK pathway demonstrate promise as effective therapies. Despite these advances, resistance remains an issue, as illustrated recently by the clinical experience with vemurafenib. Such acquired resistance appears to be the result of parallel pathway activation, such as PI3K, to overcome single-agent inhibition. In this report, we describe the cytotoxicity and anti-tumour activity of the novel MEK inhibitor, E6201, in a broad panel of melanoma cell lines (n = 31) of known mutational profile in vitro and in vivo. We further test the effectiveness of combining E6201 with an inhibitor of PI3K (LY294002) in overcoming resistance in these cell lines. RESULTS: The majority of melanoma cell lines were either sensitive (IC50 < 500 nM, 24/31) or hypersensitive (IC50 < 100 nM, 18/31) to E6201. This sensitivity correlated with wildtype PTEN and mutant BRAF status, whereas mutant RAS and PI3K pathway activation were associated with resistance. Although MEK inhibitors predominantly exert a cytostatic effect, E6201 elicited a potent cytocidal effect on most of the sensitive lines studied, as evidenced by Annexin positivity and cell death ELISA. Conversely, E6201 did not induce cell death in the two resistant melanoma cell lines tested. E6201 inhibited xenograft tumour growth in all four melanoma cell lines studied to varying degrees, but a more pronounced anti-tumour effect was observed for cell lines that previously demonstrated a cytocidal response in vitro. In vitro combination studies of E6201 and LY294002 showed synergism in all six melanoma cell lines tested, as defined by a mean combination index < 1. CONCLUSIONS: Our data demonstrate that E6201 elicits a predominantly cytocidal effect in vitro and in vivo in melanoma cells of diverse mutational background. Resistance to E6201 was associated with disruption of PTEN and activation of downstream PI3K signalling. In keeping with these data we demonstrate that co-inhibition of MAPK and PI3K is effective in overcoming resistance inherent in melanoma.
Resumo:
Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.