990 resultados para Iterative Closet Point
Resumo:
When a thin rectangular plate is restrained on the two long edges and free on the remaining edges, the equivalent stiffness of the restraining joints can be identified by the order of the natural frequencies obtained using the free response of the plate at a single location. This work presents a method to identify the equivalent stiffness of the restraining joints, being represented as simply supporting the plate but elastically restraining it in rotation. An integral transform is used to map the autospectrum of the free response from the frequency domain to the stiffness domain in order to identify the equivalent torsional stiffness of the restrained edges of the plate and also the order of natural frequencies. The kernel of the integral transform is built interpolating data from a finite element model of the plate. The method introduced in this paper can also be applied to plates or shells with different shapes and boundary conditions. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The uncertainty associated with a rainfall-runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. © 2011 Copyright IAHS Press.
Resumo:
In standard Gaussian Process regression input locations are assumed to be noise free. We present a simple yet effective GP model for training on input points corrupted by i.i.d. Gaussian noise. To make computations tractable we use a local linear expansion about each input point. This allows the input noise to be recast as output noise proportional to the squared gradient of the GP posterior mean. The input noise variances are inferred from the data as extra hyperparameters. They are trained alongside other hyperparameters by the usual method of maximisation of the marginal likelihood. Training uses an iterative scheme, which alternates between optimising the hyperparameters and calculating the posterior gradient. Analytic predictive moments can then be found for Gaussian distributed test points. We compare our model to others over a range of different regression problems and show that it improves over current methods.
Resumo:
The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.
Resumo:
In this paper we propose novel designs that enhance the plasma concentration across the Field Stop IGBT. The "p-ring" and the "point-injection" type devices exhibit increased cathode side conductivity modulation which results in impressive IGBT performance improvement. These designs are shown to be extremely effective in lowering the on-state losses without compromising the switching performance or the breakdown rating. For the same switching losses we can achieve more than 20% reduction of the on state energy losses compared to the conventional FS IGBT. © 2012 IEEE.
Resumo:
Automating the model generation process of infrastructure can substantially reduce the modeling time and cost. This paper presents a method to generate a sparse point cloud of an infrastructure scene using a single video camera under practical constraints. It is the first step towards establishing an automatic framework for object-oriented as-built modeling. Motion blur and key frame selection criteria are considered. Structure from motion and bundle adjustment are explored. The method is demonstrated in a case study where the scene of a reinforced concrete bridge is videotaped, reconstructed, and metrically validated. The result indicates the applicability, efficiency, and accuracy of the proposed method.
Resumo:
Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.
Resumo:
Most of the existing automated machine vision-based techniques for as-built documentation of civil infrastructure utilize only point features to recover the 3D structure of a scene. However it is often the case in man-made structures that not enough point features can be reliably detected (e.g. buildings and roofs); this can potentially lead to the failure of these techniques. To address the problem, this paper utilizes the prominence of straight lines in infrastructure scenes. It presents a hybrid approach that benefits from both point and line features. A calibrated stereo set of video cameras is used to collect data. Point and line features are then detected and matched across video frames. Finally, the 3D structure of the scene is recovered by finding 3D coordinates of the matched features. The proposed approach has been tested on realistic outdoor environments and preliminary results indicate its capability to deal with a variety of scenes.
Resumo:
The formation energies of the oxygen vacancy and titanium interstitial in rutile TiO 2 were calculated by the screened-exchange (sX) hybrid density functional method, which gives a band gap of 3.1 eV, close to the experimental value. The oxygen vacancy gives rise to a gap state lying 0.7 eV below the conduction band edge, whose charge density is localized around the two of three Ti atoms next to the vacancy. The Ti interstitial (Ti int) generates four defect states in the gap, whose unpaired electrons lie on the interstitial and the adjacent Ti 3d orbitals. The formation energy for the neutral oxygen vacancy is 1.9 eV for the O-poor chemical potential. The neutral Ti interstitial has a lower formation energy than the O vacancy under O-poor conditions. This indicates that both the O vacancy and Ti int are relevant for oxygen deficiency in rutile TiO 2 but the O vacancy will dominate under O-rich conditions. This resolves questions about defect localization and defect predominance in the literature. © 2012 American Physical Society.
Resumo:
This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.
Resumo:
This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application. © 2012 Springer Science+Business Media, LLC.
Resumo:
This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.
Resumo:
In the field of vibration-based damage detection of concrete structures efficient damage models are needed to better understand changes in the vibration properties of cracked structures. These models should quantitatively replicate the damage mechanisms in concrete and easily be used as damage detection tools. In this paper, the flexural cracking behaviour of plain concrete prisms subject to monotonic and cyclic loading regimes under displacement control is tested experimentally and modelled numerically. Four-point bending tests on simply supported un-notched prisms are conducted, where the cracking process is monitored using a digital image correlation system. A numerical model, with a single crack at midspan, is presented where the cracked zone is modelled using the fictitious crack approach and parts outside that zone are treated in a linear-elastic manner. The model considers crack initiation, growth and closure by adopting cyclic constitutive laws. A multi-variate Newton-Raphson iterative solver is used to solve the non-linear equations to ensure equilibrium and compatibility at the interface of the cracked zone. The numerical results agree well with the experiments for both loading scenarios. The model shows good predictions of the degradation of stiffness with increasing load. It also approximates the crack-mouth-opening-displacement when compared with the experimental data of the digital image correlation system. The model is found to be computationally efficient as it runs full analysis for cyclic loading in less than 2. min, and it can therefore be used within the damage detection process. © 2013 Elsevier Ltd.