980 resultados para Isotopic substitution
Resumo:
The aim of this paper is to analyze and compare mineralogy and geochemistry of copper-zinc sulfide ores from the Logachev-2 and Rainbow hydrothermal fields of the Mid-Atlantic Ridge (MAR) confined to serpentinite protrusions. It was found that Zn(Fe) and Cu, Fe(Zn) sulfides had been deposited in black smokers pipes almost simultaneously from intermittently flowing, nonequilibrium H2S-low solutions of different temperatures. Pb isotope composition confirmed that the deep oceanic crust had been a source of lead. The ores from the Rainbow field are 20-fold higher in Co than ores restricted to basalts and show a high ratio of Co/Ni=46. The ores from the Rainbow field are enriched in 34S isotope (aver. d34S=10 per mil) because of constant flow of cold sea water into the subsurface zone of the hydrothermal system. Ores from the Logachev-2 field are 8 times higher in gold compared to other MAR regions. Sulfide ores from the Rainbow and Logachev-2 fields have no analogues among MAR ore occurrences in terms of enrichment in valuable components (Zn, Cd, Co, and Au).
Resumo:
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
CH4 and CO2 species in pore fluids from slope sediments off Guatemala show extreme 13C-enrichment (d13C of -41 and +38 per mil, respectively) compared with the typical degree of 13C-enrichment in pore fluids of DSDP sediments (d13C of - 60 and + 10 per mil). These unusual isotopic compositions are believed to result from microbial decomposition of organic matter, and possibly from additional isotopic fractionation associated with the formation of gas hydrates. In addition to the isotopic fractionation displayed by CH4 and CO2, the pore water exhibits a systematic increase in d18O with decrease in chlorinity. As against seawater d18O values of 0 and chlorinity of 19 per mil, the water collected from decomposed gas hydrate from Hole 570 had a d18O of + 3.0 per mil and chlorinity of 9.5 per mil. The isotopic compositions of pore-fluid constituents change gradually with depth in Hole 568 and discontinuously with depth in Hole 570.
Resumo:
Barite crusts were formed by an intermittent hydrothermal vent with output temperature from 85 to 465°C. Principal sources of supply of sulfate sulfur are sea water, evaporites, and tholeiitic basalts of the Red Sea rift. Sulfides and sulfates were formed in conditions of isotope disequilibrium with respect to sulfur because rate of precipitation of sulfur compounds from hydrothermal solution was high compared with rate of isotope exchange.
Resumo:
Strontium isotopic ratios of gypsums recovered from upper Miocene (Messinian) evaporites at ODP Leg 107 Holes 652A, 653B, and 654A (Tyrrhenian Sea) are lower than expected. The values for the Messinian balatino-like gypsum, single gypsum crystals, and anhydrites range from 0.70861 to 0.70886 and are approximately 25 * 10**-5 less than would be expected for evaporites precipitated from Messinian seawater (0.70891-0.70902). Pre-evaporitic planktonic foraminifers from Hole 654A show variable degrees of dolomitization and 87Sr/86Sr values that irregularly decrease upward from normal marine values approximately 81m below the lowest evaporite occurrence. This suggests diagenetic alteration by advecting interstitial water with a low 87Sr/86Sr ratio or that the lower Sr isotopic ratios for the Messinian evaporites could have resulted from a greater influence of fresh water on the Sr isotopic composition of the desiccating Tyrrhenian Sea. Fluctuations of the 87Sr/86Sr-ratio for evaporites in the sedimentary cycles recognized for Holes 653B and 654A, the generally low Sr isotopic ratio of river water entering the Mediterranean Sea, and the presence of dwarf marine microfossils suggest that the 87Sr/86Sr ratio of the evaporites responded to hydrologic variations in a very restricted basin with variable rates of marine and fresh water input. The strontium isotopic ratios of the Messinian anhydrites from the proposed lacustrine sequence at Hole 652A fall in the same range as the marine evaporites from Holes 654A and 653B. This suggests a common or similar origin of the brines at the three locations. The complex depositional and hydrologic conditions in the Mediterranean during the Messinian salinity crisis preclude the use of Sr isotopic values from the evaporites for stratigraphic correlation and dating. They are, however, very useful in the interpretation of the depositional history of the basin. General calculations assuming a closed system suggest that the 87Sr/86Sr ratio of Messinian seawater (-0.7090) could be reduced to that of the evaporites (-0.7087) by mixing with fresh water (e.g., Nile River) in times of 10**4 to 10**5 yr.
Resumo:
The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.
Relative abundance and isotopic composition of calcite, dolomite and siderite from ODP Leg 164 sites
Resumo:
Authigenic carbonate mineral distributions are compared to pore-water geochemical profiles and used to evaluate diagenesis within sedimentary sections containing gas hydrates on the Blake Ridge (Ocean Drilling Program Sites 994, 995, and 997). Carbonate mineral distributions reveal three distinct diagenetic zones. (1) Carbonate minerals in the upper 20 m are primarily biogenic and show no evidence of diagenesis. The d13C and d18O values of calcite within this zone reflects marine carbonate (~0 per mil Peedee belemnite [PDB]) formed in equilibrium with seawater. (2) Between 20 and 100 mbsf, calcite d13C values are distinctly negative (as low as -7.0 per mil), and authigenic dolomite is common (~2-40 wt%) with d13C values between -3.6 per mil and 13.7 per mil. (3) Below 100 mbsf, dolomite abundance decreases to trace amounts, and disseminated siderite becomes the pervasive (~2-30 wt%) authigenic carbonate. Both siderite textures and stable isotope values indicate direct precipitation from pore fluids rather than dolomite replacement. The d13C and d18O values of siderite vary from 5.0 per mil to 10.9 per mil and 2.9 per mil to 7.6 per mil, respectively. Comparisons between the d13C profiles of dissolved inorganic carbon (DIC) and pore-water concentration gradients, with the d13C and d18O values of authigenic carbonates, delineate a distinct depth zonation for authigenic carbonate mineral formation. Coincidence of the most negative d13CDIC values (<=-38 per mil) and negative d13C values of both calcite and dolomite, with pore-water alkalinity increases, sulfate depletion, and decreases in interstitial Ca2+ and Mg2+ concentrations at and below 20 mbsf, suggests that authigenic calcite and dolomite formation is initiated at the base of the sulfate reduction zone (~21 mbsf) and occurs down to ~100 mbsf. Siderite formation apparently occurs between 120 and 450 mbsf; within, and above, the gas hydrate-bearing section of the sediment column (~200-450 mbsf). Siderite d13C and d18O values are nearly uniform from their shallowest occurrence to the bottom of the sedimentary section. However, present-day pore-water d13CDIC values are only similar to siderite d13C values between ~100 and 450 mbsf. Furthermore, calculated equilibrium d18O values of siderite match the measured 18O values of siderite between 120 and 450 mbsf. This interval is characterized by high alkalinity (40-120 mM) and low Ca2+ and Mg2+ concentrations, conditions that are consistent with siderite formation.
Resumo:
Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above.
Resumo:
Sulfide mineralogy, sulfur contents, and sulfur isotopic compositions were determined for samples from the 500-m gabbroic section of Ocean Drilling Program Hole 735B in the southwest Indian Ocean. Igneous sulfides (pyrrhotite, chalcopyrite, pentlandite, and troilite) formed by accumulation of immiscible sulfide droplets and crystallization from intercumulus liquids. Primary sulfur contents average around 600 ppm, with a mean sulfide d34S value near 0 per mil, similar to the isotopic composition of sulfur in mid-ocean ridge basalt glass. Rocks from a 48-m interval of oxide gabbros have much higher sulfur contents (1090-2530 ppm S) due to the increased solubility of sulfur in Fe-rich melts. Rocks that were locally affected by early dynamothermal metamorphism (e.g., the upper 40 m of the core) have lost sulfur, averaging only 90 ppm S. Samples from the upper 200 m of the core, which underwent subsequent hydrothermal alteration, also lost sulfur and contain an average of 300 ppm S. Monosulfide minerals in some of the latter have elevated d34S values (up to +6.9 per mil), suggesting local incorporation of seawater-derived sulfur. Secondary sulfides (pyrrhotite, chalcopyrite, pentlandite, troilite, and pyrite) are ubiquitous in trace amounts throughout the core, particularly in altered olivine and in green amphibole. Pyrite also locally replaces igneous pyrrhotite. Rocks containing secondary pyrite associated with late low-temperature smectitic alteration have low d34S values for pyrite sulfur (to - 16.6 per mil). These low values are attributed to isotopic fractionation produced during partial oxidation of igneous sulfides by cold seawater. The rocks contain small amounts of soluble sulfate (6% of total S), which is composed of variable proportions of seawater sulfate and oxidized igneous sulfur. The ultimate effect of secondary processes on layer 3 gabbros is a loss of sulfur to hydrothermal fluids, with little or no net change in d34S.