934 resultados para Irrigation pumps.
Resumo:
Total Artificial Hearts are mechanical pumps which can be used to replace the failing natural heart. This novel study developed a means of controlling a new design of pump to reproduce physiological flow bringing closer the realisation of a practical artificial heart. Using a mathematical model of the device, an optimisation algorithm was used to determine the best configuration for the magnetic levitation system of the pump. The prototype device was constructed and tested in a mock circulation loop. A physiological controller was designed to replicate the Frank-Starling like balancing behaviour of the natural heart. The device and controller provided sufficient support for a human patient while also demonstrating good response to various physiological conditions and events. This novel work brings the design of a practical artificial heart closer to realisation.
Resumo:
The Murray River is the boundary between NSW and Victoria. The river both defines boundaries and unites them with the waters that sustain townships, irrigation and the floodplain forests, including the 70 000ha of the iconic Barmah and Millewa Forest. The river and its floodplain are the traditional lands of the Yorta Yorta and Bangerang people. The Murray is a very different river to the one the Yorta Yorta and Bangerang peoples once knew and fished...
Resumo:
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.
Resumo:
Background and Purpose The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. Experimental Approach C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. Key Results (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. Conclusions and Implications β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Resumo:
Background Prevention strategies are critical to reduce infection rates in total joint arthroplasty (TJA), but evidence-based consensus guidelines on prevention of surgical site infection (SSI) remain heterogeneous and do not necessarily represent this particular patient population. Questions/Purposes What infection prevention measures are recommended by consensus evidence-based guidelines for prevention of periprosthetic joint infection? How do these recommendations compare to expert consensus on infection prevention strategies from orthopedic surgeons from the largest international tertiary referral centers for TJA? Patients and Methods A review of consensus guidelines was undertaken as described by Merollini et al. Four clinical guidelines met inclusion criteria: Centers for Disease Control and Prevention's, British Orthopedic Association, National Institute of Clinical Excellence's, and National Health and Medical Research Council's (NHMRC). Twenty-eight recommendations from these guidelines were used to create an evidence-based survey of infection prevention strategies that was administered to 28 orthopedic surgeons from members of the International Society of Orthopedic Centers. The results between existing consensus guidelines and expert opinion were then compared. Results Recommended strategies in the guidelines such as prophylactic antibiotics, preoperative skin preparation of patients and staff, and sterile surgical attire were considered critically or significantly important by the surveyed surgeons. Additional strategies such as ultraclean air/laminar flow, antibiotic cement, wound irrigation, and preoperative blood glucose control were also considered highly important by surveyed surgeons, but were not recommended or not uniformly addressed in existing guidelines on SSI prevention. Conclusion Current evidence-based guidelines are incomplete and evidence should be updated specifically to address patient needs undergoing TJA.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.
Resumo:
Tissue engineering of vascularized constructs has great utility in reconstructive surgery. While we have been successful in generating vascularized granulation-like tissue and adipose tissue in an in vivo tissue engineering chamber, production of other differentiated tissues in a stable construct remains a challenge. One approach is to utilize potent differentiation factors, which can influence the base tissue. Endothelial precursor cells (EPCs) have the ability to both carry differentiation factors and home to developing vasculature. In this study, proof-of-principle experiments demonstrate that such cells can be recruited from the circulation into an in vivo tissue engineering chamber. CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor 1 was infused into the chamber through Alzet osmotic pumps and chamber cannulation between days 0 and 7, and facilitated recruitment of systemically inoculated exogenous human EPCs injected on day 6. CXCL12 infusion resulted in an eightfold increase in EPC recruitment, 2 (p = 0.03) and 7 days postinfusion (p = 0.008). Delivery of chemotactic/proliferation and/or differentiation factors and appropriately timed introduction of effective cells may allow us to better exploit the regenerative potential of the established chamber construct. © Copyright 2009, Mary Ann Liebert, Inc. 2009.
Resumo:
A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.
Resumo:
Microbial respiratory reduction of nitrous oxide (N2O) to dinitrogen (N2) via denitrification plays a key role within the global N-cycle since it is the most important process for converting reactive nitrogen back into inert molecular N2. However, due to methodological constraints, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across various ecosystems. We investigated N2, N2O and NO emissions from irrigated cotton fields within the Aral Sera Basin using the He/O2 atmosphere gas flow soil core technique and an incubation assay. NH4NO3 fertilizer, equivalent to 75 kg ha−1 and irrigation water, adjusting the water holding capacity to 70, 100 and 130% were applied to the incubation vessels to assess its influence on gaseous N emissions. Under soil conditions as they are naturally found after concomitant irrigation and fertilization, denitrification was the dominant process and N2 the main end product of denitrification. The mean ratios of N2/N2O emissions increased with increasing soil moisture content. N2 emissions exceeded N2O emissions by a factor of 5 ± 2 at 70% soil water holding capacity (WHC) and a factor of 55 ± 27 at 130% WHC. The mean ratios of N2O/NO emissions varied between 1.5 ± 0.4 (70% WHC) and 644 ± 108 (130% WHC). The magnitude of N2 emissions for irrigated cotton was estimated to be in the range of 24 ± 9 to 175 ± 65 kg-N ha−1season−1, while emissions of NO were only of minor importance (between 0.1 to 0.7 kg-N ha−1 season−1). The findings demonstrate that for irrigated dryland soils in the Aral Sera Basin, denitrification is a major pathway of N-loss and that substantial amounts of N-fertilizer are lost as N2 to the atmosphere for irrigated dryland soils.
Resumo:
Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
Resumo:
Megaprojects are described as large, complex and expensive construction projects. Recent studies have shown that megaprojects often result in cost overruns, time extensions and undesired outcomes. Regardless, megaprojects are common, particularly in developing countries, as they are a trigger for social and economic development (Li et al., 2010). Since 2007, the Government of Ecuador has begun an unprecedent investment in infrastructure. Through the National Water Secretary, the government has 16 projects in agenda accounting for over $ 3 billion, with 6 projects currently under construction. These projects are considered flagship infrastructure in the endeavour to enhance the country´s productivity.The Bulubulu-Naranjal-Cañar project, a $406 million multi-purpose hydraulic project for irrigation and flood control, consists of over 1,000 activities and was proposed to be completed by 2015. This novel project for Ecuador, presented as a case study, represents a challenge for project management and financing. The purpose of this preliminary study is to provide an insight to megaproject management in Ecuador, and propose improvements to megaproject management through optimization of stochastic project schedules.
Resumo:
This study developed an understanding of hydrological processes within the Cressbrook Creek catchment of the upper Brisbane River, in particular for the alluvial aquifers. Those aquifers within the lower catchment are used for intensive irrigation, and have been impacted by long-term drought followed by flooding. The study utilised water chemistry, isotopic characters and hydraulic measurements to determine factors such as recharge, links between creeks and groundwater, and variations in water quality. The catchment-wide study will enable improved management of the local water resources.
Resumo:
In this paper we discuss the use of a series of column experiments to improve understanding of the effect irrigation water chemistry (saline solutions) has on measurements of saturated hydraulic conductivity (Ksat) of a sodic clay soil. We highlight in particular the use of extended leaching periods to determine whether the duration of leaching affects the results. In the experiments, mixed cation solutions of two different salinity levels, 50 meq/L and 100 meq/L, were applied under constant head to columns of a repacked sodic clay soil using three replicates for each treatment. The maximum Ksat measured during leaching with the 100 meq/L solution was approximately double the maximum Ksat measured during leaching with the 50 meq/L solution. Measured flow rates were found to increase rapidly after flow commenced then decrease gradually until flow rates became stable. The final, stable flow rate was roughly 80% less than the maximum flow rate measured. Reasons for these changes in saturated hydraulic conductivity are discussed. The key finding from these experiments is that long term leaching, involving significantly more pore volumes than is commonly reported in the literature, is required to obtain a ‘stable’ Ksat. We recommend that further studies be carried out to (1) determine whether similar behaviour in Ksat occurs in a wide range of sodic clay soils and (2) to help build a better understanding of the causes and implications of the observed behaviour in Ksat.