645 resultados para Ionic strengths
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.
Resumo:
This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.
Resumo:
Um experimento foi conduzido com o objetivo de avaliar os efeitos de duas fontes de vitamina D e três níveis de vitamina C sobre as características de desempenho, a qualidade interna e externa dos ovos, os níveis de cálcio total e iônico séricos e a resistência óssea de poedeiras. Foram utilizadas 288 galinhas da linhagem ISA Babcock B300® com 23 semanas de idade, durante um período experimental de 12 semanas. Utilizou-se o delineamento inteiramente ao acaso em arranjo fatorial 2 × 3, com os fatores: fontes de vitamina D (colecalciferol e 25-hidroxicolecalciferol - 25(OH)D3) e de vitamina C (0, 100 e 200 ppm), totalizando seis tratamentos com oito repetições de seis aves. O nível basal de colecalciferol foi de 2.756 UI/kg, correspondendo a 5,51 g do produto comercial Hy.D®/t de ração, como fonte de 25(OH)D3. Os fatores estudados não influenciaram o consumo de ração, a produção, o peso e a massa de ovos. Observou-se efeito da interação de fontes de vitamina sobre a conversão alimentar, que foi melhor quando utilizado metabólito 25(OH)D3 na ausência de vitamina C. Interações foram observadas para porcentagem de albúmen e porcentagem de gema, que aumentaram na presença de 200 ppm de vitamina C. O peso específico dos ovos, as concentrações de cálcio sérico, cinzas ósseas e a resistência à quebra não foram influenciadas pelas fontes de vitamina D e C. Houve interação para porcentagem e espessura de casca, cujos maiores valores foram obtidos com a suplementação de vitamina C na presença de 25(OH)D3. Em poedeiras na fase inicial de produção, a conversão alimentar é melhor com a utilização do 25(OH)D3 e a espessura e porcentagem de casca também melhoram com a utilização de 25(OH)D3 e a suplementação de vitamina C nas dietas (100 ou 200 ppm, respectivamente).
Resumo:
The thermal conductivity and mechanical strength of gypsum and gypsum-cellulose plates made from commercial plaster by a new process have been measured. The gypsum parts made by the new process, 'novogesso', have high mechanical strength and low porosity. The gypsum strength derives from both the high aspect ratio of the gypsum crystals and the strong adhesion among them by nano-flat layers of confined water, which behaves as supercooled water. Another contribution to the strength comes from the nano-flatness of the lateral surfaces of the gypsum single crystals. The bending and compression strengths, σB and σc, of gypsum plates prepared by this new technique can be as high as 30 and 100 MPa, respectively. The way gypsum plates have been assembled as well as their low thermal conductivity allowed for the construction of a low-cost experimental house with thermal and acoustic comfort.
Resumo:
Information collected in the present high resolution study of 104Pd(d,t)103Pd is interpreted within the systematics of the A ~ 100 region. The paper complements data previously presented by the S.Paulo Group, which were taken with the Pelletron-Enge-Spectrograph facility. A one-to-one correspondence to gamma ray results for 103Pd, collected by the Nuclear Data Sheets (NDS), was achieved and at least four open questions were settled. More reliable spectroscopic strengths were extracted in the present study.
Resumo:
cDNA coding for two digestive lysozymes (MdL1 and MdL2) of the Musca domestica housefly was cloned and sequenced. MdL2 is a novel minor lysozyme, whereas MdL1 is the major lysozyme thus far purified from M. domestica midgut. MdL1 and MdL2 were expressed as recombinant proteins in Pichia pastoris, purified and characterized. The lytic activities of MdL1 and MdL2 upon Micrococcus lysodeikticus have an acidic pH optimum (4.8) at low ionic strength (μ = 0.02), which shifts towards an even more acidic value, pH 3.8, at a high ionic strength (μ = 0.2). However, the pH optimum of their activities upon 4-methylumbelliferyl N-acetylchitotrioside (4.9) is not affected by ionic strength. These results suggest that the acidic pH optimum is an intrinsic property of MdL1 and MdL2, whereas pH optimum shifts are an effect of the ionic strength on the negatively charged bacterial wall. MdL2 affinity for bacterial cell wall is lower than that of MdL1. Differences in isoelectric point (pI) indicate that MdL2 (pI = 6.7) is less positively charged than MdL1 (pI = 7.7) at their pH optima, which suggests that electrostatic interactions might be involved in substrate binding. In agreement with that finding, MdL1 and MdL2 affinities for bacterial cell wall decrease as ionic strength increases.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of indicating loss of marginal seal in the composite restorations; the 3-step conventional adhesive system had better performance regarding microleakage in enamel on primary and permanent teeth.
Resumo:
O presente estudo teve como objetivo descrever o desenvolvimento dos sistemas renais de bovinos durante o período embrionário compreendido entre 10 e 50 dias. Embriões bovinos coletados em frigorífico foram fotografados e medidos utilizando-se o método Crow-Rump (CR) para estimar a idade gestacional. Os embriões destinados à miscroscopia óptica foram fixados em solução de Bouin para a avaliação do desenvolvimento do sistema renal, assim como suas estruturas. Alguns embriões também foram fixados em Glutaraldeído 2,5% e destinados à microscopia eletrônica de transmissão para o estudo ultraestrutural das células do sistema renal. Embriões entre o 14° e o 15° dia de desenvolvimento (E14-15) não apresentaram pronefro, mas apresentaram mesonefro, assim como indícios morfológicos que indicam sua atividade funcional. O mesonefro apresentou, no interior de suas células tubulares, inúmeras mitocôndrias e interdigitações, indicando uma alta atividade de transporte iônico. O metanefro, ou rim definitivo, iniciou seu desenvolvimento em E23-24. Os achados emonstram que a involução do mesonefro acontece simultaneamente com a diferenciação metanefrogênica. Em E45-46, já iniciando a fase fetal, o metanefro possuiu unidades filtradoras (néfrons), com seus respectivos glomérulos, túbulos contorcidos proximais e distais e alça de Henle. Nessa fase, o rim ainda não apresenta lobação externa.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.